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Quantum Relative Entropy

= A fundamental quantity in Quantum Mechanics & Quantum
Information Theory is the Quantum Relative Entropy

of p wr.t. 0, p>0, Trp=1 oc=0:

(state / density matrix)

S(pllo)=Tr(plog p)-Tr(p log o)

well-defined if SUpPpP p C SUpp o

log =log,

= [t acts as a parent quantity for the von Neumann entropy:

S(p)=-Tr(plog p)==S(pll1) | (c=1)
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= It also acts as a parent quantity for other entropies:

e.g. for a bipartite state O,z '

= Conditional entropy

S(A] B)p =3(Pne) = S(Ps) ==S(Pps I 1, ® p5)

= Mutual information Ps =TI\ Pag

1(A:B), =3(0,) +S(05) —S(0a5) =S(Pps | P ® p5)
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Some Properties of S(po || o)

S(pllo)=0 P, 0 states
“distance” =0if&onlyif p=0c

= Joint convexity:

For two mixtures of states X — Z PO & 0= Z Yleoy
=1

S(pllo) < Z p.S (o |l o)

= |nvariance under

SUpPU lUaU")=S(p o)

joint unitaries
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= Monotonicity of Quantum Relative Entropy under a
completely positive trace-preserving (CPTP) map A :

vpowerfult | S(A(P)[|Ald)) <S(pllo) | - (1)

= Many properties of other entropies can be proved using (1)

e.g. Strong subadditivity of the von Neumann entropy

Lieb & Ruskail ‘73

S(Ppgc) +S(05) < S(Pas) +S(Pgc)

S(A|BC), <S(A|B), i c
ABC
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Outline

= Define 2 generalized relative entropy guantities
= Discuss their properties and operational significance
= Define 2 entanglement monotones

= Discuss their opmignificance

= Consider a family tree of quantum protocols
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Two new relative entropies

= Definition 1 : The max- relative entropy of a state O & a
positive operator O IS

Snex(Pll0) =log (Min{A:p<ic})
/

/

(lo—p) =0
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= Definition 2: The min- relative entropy of a state £ & a
positive operator g IS

Smin (/0 H 0) == Iog Tr (72.106)

where ﬂ'p denotes the projector onto the support of 1%

(supp p)

supp p(1supp o #
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= Remark: The min- relative entropy

Sun(pll0):=—log Tr 7,0

IS the quantum relative Renyi entropy of order 0

™~
~

Sun(P116) =S5(pllo) =1imS,(pllo)

where

S, (0]l o) i=——log Tr (p“c™?)

7 a—1
/
guantum relative Renyi entropy of order

(a #1)
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= Proof:

S__(pllo):=log (;r:n’iﬁ},a: p<ict) =log

p < A0, (1,o—p) =0
Tr [z, (40— p)]=0 v, 20
A Trz,ol=Trz,p] =1

log 4, +log [Tr(z,0)]=0
log A4, = —log [Tr(z,0)]

— T
Smax (p ” 0) Z Smin (IO ” G)
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Operational significance of S_. (o]l o)
= State Discrimination: Bgp receives a state

N
Yo, or O

s He does a measurement to infer which state it is

povm IT [p] & (I -11) [o] o<II<I

a| Possible errors Inference actual state
Type | o '0 hypothesis
Type ll yo O testing
= Error a=Tr((I -II)p) Type |

probabilities L =Tr(Ilo) Type I
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= Suppose [1=rx (POVM element)

P,
Prob(Type I error) Prob(Type Il error)
a=Tr((I -=II) p) L=Tr(Ilo)
=0 =Tr(z,0)

Bob never infers the state

tobe O whenitis O

Sun(pll0) =—log Tr 7,0

BUT

Hence IB — Z_Smin (ollo)
= Prob(Type Il error | Type | error = 0)
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= Compare with the operational significance of S (,O H G)

TS

arises in asymptotic hypothesis testing

= Suppose Bob is given many (n) identical copies of the state

/ p®n
\ G@n

= He receives

= For 1N large enough,

= Prob(Type Il error | Type | error < 8)
for any fixed

~ 2N S(plo) 0<e<l
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" rence. Smn(P1l0) &S(p|l0)

have similar interpretations in terms of Prob(Type Il error)
Suin(£21]l0): S(pllo):
m ad Single Copy of the state - N Copies of the state

= Prob(Type | error) = O = Prob(Type | error)
— 0

Nn— oo
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= Like S(p||o) we have for 0,0 states

S.(p|lo)>0 for *—=max, min

S.(A(p)||A(c)) £S.(p||o) |forany CPTP map A

for any unitary

s Also S*(pug) — S*(UpU* ”UGU*)

operator U

= Most interestingly

Smn(Pllo)<S(pllo) < S, (pllo)




I UNIVERSITY OF
&Y CAMBRIDGE

= The min-relative entropy is jointly convex in its arguments.

= The max-relative entropy Is quasiconvex:

n
n
For two mixtures of states £ = Z Pifi & o= Z p.o;
=1 i=1

S (Pll0) <Maxs,., (o1 o;)

= Also act as parent quantities for other entropies...........
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mln (/0) __Smax(p | I) Hmaxx(p) = _Smin (/O” I)

~~~~~~~ ~._ =log rank
=—logllell.___| J 1% ke
~~~~~~~~~ [Renner]

Just as:

von Neumann S(p):—S(IOH |)
entropy

Hmax(,O) 2 I_Imin (,0)
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= For a bipartite state Pas -

Hmin (A‘ B)p = _Smax(pAB H IA ®/OB)

just as:

just as:

S(A[B)==S(pps [l 1, ® p5)

Imin(A: B)p = Smin (IOAB ” pA ®IOB)

1(A:B) =S(pus | P2 ® p5)

etc.

etc.
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Min- and Max- Relative Entropies satisfy the:

(1) Strong Subadditivity Property

Hmin(A| BC)p < Hmin(Al B)p

(2) Subadditivity Property

Hmax (IOAB) < I_Imax (IOA) T Hmax (IOB)
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(Q) What are the operational significances of the
min- and max- relative entropies in
Quantum Information Theory?
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the evaluation of: optimal rates of info-processing tasks

= data compression,
= transmission of information through a channel
= entanglement manipulation etc.

Initially evaluated in the ““asymptotic, memoryless setting”
under the following assumptions:

= Information sources & channels were memoryless
= they were used an infinite number of times (asymptotic limit)

= Optimal rates -- entropic quantities @t qua@
obtainable from the @ve entropy
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= optimal rate of data compression:

. the minimum number of qubits needed to
store (compress) info emitted per use of a

guantum info source : reliably
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‘—) signals

Quantum Info source

signals (pure states) ‘l//1>"‘//2>----,‘§”k>€ ?/

‘e
.
.
.
.
0
*
0
‘e
-

with probabilities ~ Pi» Pareees Py Hilbert space

= Then source characterized by: {,0, W}
4

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

density matrix { pi | ‘Wi >}

P:g P; ‘Wi><l/ji‘
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To evaluate data compression limit :
Consider a sequence
{pn ) Wﬂ}n

If the quantum info source is memoryless

#H =H" | py=p" p L7l

e.g. A memoryless guantum info source emitting qubits

= Consider [N successive uses of the source ; N1 qubits emitted
= Storedin My qubits , My <N (gata compression)

m
rate of data compression = -
N
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_ _ L™
Optimal rate of data compression ROO = lim—
n—o N

under the requirement that (n)
error

— 0
N—>o0

R, =S(p) ==S(p|I) (parent)
= von Neumann entropy S(,O) = —1r (p Iog ,0)

of the source

« WHAT IF - State of a quantum spin system

Pn
{,On ’ %}n Ly 7 ,0®n not memoryless !

( N Iinteracting spins)
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Transmission of information through a quantum channel

@ —————————— >»| Quantum channel

information

Examples:

—_— I
= Optical fibre : through whi Wized ph@are

mobile particles which carry the info

transmitted

= A quantum spin chain - governed by a suitable Hamiltonian
= Info carriers (spin-1/2 particles) not mobile

= Instead the dynamical properties of the spin
chain are exploited to transmit info
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Perfect transfer of state through a
guantum spin chain

J J J [Christandl, ND,
Ekert, Landahl]

A T )
with J :E\/'(N 1)
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Transmission of information through a quantum channel

Information
@ ---------- >| Quantum channel f--------- »@]

: information distorted
Alice noisy! Bob

Optimal rate/capacity : the max. amount of info that can be
reliably transmitted per use of the channel

s Let (I)(”) . N successive uses of a guantum channel
)

no correlation in the noise affecting
® memoryless if: states transmitted through successive uses
of the channel:

oV 0 ] 200
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Additional resource:

o
.
.
.
o
.
.
Ry
.
.
.
o
.
.
.
o
.

.
e,
L
e,
.,
"
.
L
N,
LN
LN
L
.,
e,
N,
L
N,
LN
L
.
LN

o
.
.
.
Y
.
.
.
o
.
.
.
o
.
.
Ry
.
.

N uses of a decoding Bob
noisy channel

= Information: —r guantum

= [nput states:

encoding

= Measurements:

= individual

-- product states p'" = p, e p, 9.0 p,

or = collective

-- entangled states
. These capacities evaluated in : asymptotic, memoryless setting

= Parent quantity = quantum relative entropy
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In real-world applications “asymptotic memoryless setting”

not necessarily valid

= |n practice: info. sources & channels are used a finite
number of times;
s there are unavoidable correlations between successive

uses (memory effects)

e.g. “Spin chain model for correlated quantum channels”

Rossini et al, New J.Phys. 2008
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Hence it is important to evaluate optimal rates for

finite number of uses (or even a single use)
4

- /
of an arbitrary source, channel or entanglement resource
V4

/
/
/
/

= Corresponding optimal rates: -

Z
/
/

ﬂﬂ:: > optimal one-shot rates
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(Q) How can memory effects (effects of correlated noise) arise
In a single use (of a source or channel) ?

(A) e.g. for a channel: We could have :

~/

M uses of a channel @ with memory

D = Cb(m) (finite)

= Hence, one-shot capacity encompasses the capacity of
a channel for a finite number of its uses!

= scenario of practical interest!
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Min- & Max relative entropies: S_. (o]|o), S, (2| o)

act as parent quantities for one-shot rates of protocols

just as

Quantum relative entropy: S(p|| o)

acts as a parent quantity for asymptotic rates of protocols

e.g. Quantum Data Compression {,0,7{} memoryless source

asymptotic rate:  S(p) = =S(p|l 1) more precisely

one-shotrate: H__ (p) =-S5, (oll1) H: (o)
[Koenig & Renner]
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H o (£) ?

V0O0<egx<l

~

w Optimal rate of one-shot data compression
max (,0) N for a maximum probability of error < ¢

N

smoothed max- entropy

Hrflax(p) :: _min Hmax(ﬁ)

peB”(p)

B (p)={p: llp—pl<s]
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Further Examples Smin (,0 ” 0)

Parent quantity for the following:

= [Wang & Renner] : one-shot classical capacity
of a quantum channel

[ND & Buscemi] : one-shot entanglement cost under LOCC
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Srax (2l 0)

Parent quantity for the following:

= [Buscemi & ND] : one-shot quantum capacity of a
guantum channel

= | [ND & Hsieh] : one-shot entanglement-assisted classical
(today!) capacity of a quantum channel

s| [Buscemi & ND] : one-shot entanglement distillation

etc.
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Why are one-shot results important?

= One-shot results yield the known results of the

asymptotic, memoryless case, on taking:

N— oo andthen ¢ —>0

= Hence the one-shot analysis Is more general !

= One-shot results also take into account effects of
correlation (or memory) In sources, channels etc.

= In fact, one-shot results can be looked upon as the

fundamental building blocks of Quantum Info. Theory
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Entanglement
monotones

Min- & Max
relative
entropies
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Entanglement monotones

g E(p) = a measure of how entangled a state P Is;

i.e., the amount of entanglement in the state 0

“minimum distance” of O from the set S of separable states.

0 7
E ( ,0) set of all states

S D
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= One of the most important and fundamental entanglement
measures for a bipartite state .
P = Pas

Eq(p)=mmS(p| o)

Quantum Relative Entropy
“distance”

,~E&W)
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Entanglement Monotones

relative entropy of

Ex(p) = Te'p S(pllo) entanglement

= We can define two quantities:

_ . Max-relative entropy of
E. o (0) = gyg Srax (P21l O) entanglement

Min-relative entropy of

E.. (0) = Lnelj;’] Sin (P11 T) " entanglement

these can be proved to be entanglement monotones!
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Properties of Emax (,0) : Emin (,0)

o E. (,O) IS not changed by a local change of basis

0 E* (ALOCC (IO)) S E*(p) monotonicity
™~

(local operations & classical communication)

*=max, min
o E*(,U) =0 it pis separable

efc
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Emin (IO) < ER (,0) < Emax (/0)

" Smn(pllo) < S(pllo) <S5, (pllo)
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What are the operational significances of

Ein(0) & B (0)?
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Ex(P) and E_. (p)

have interesting operational significances in

entanglement manipulation

= What is entanglement manipulation ?

= Transformation of entanglement from one form to
another by local operations & classical communication
(LOCC) :



CAMBRIDGE Entanglement Distillation

pfé’
@/ 1A LOCC @]

Alice

Bell states

- .
e ~

F(:/A(p%]\) ®mn) —>1

S N—>0o0
m. the maximum number of Bell states that
limsup = can be extracted from the state O
] AB
=

= “distillable entanglement”
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= Bell states : resource for creating a desired target state

Bell states \IJ@m

Sl I

Alice
&N --
 PAB
m the minimum number of Bell states needed
Il_r_nl_rlt =  tocreate the state g

----- = “entanglement cost”
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Ex(P) and E_. (p)

have interesting operational significances in

entanglement manipulation

n/% > ““one-shot” scenario (ﬂ=])
/k@{ > SEPP maps

(separability-preserving maps)
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Separability Preserving (SEPP) Maps

= The largest class of CPTP maps which when acting

on a separable state yields a separable state

= If .5 separable then Aceop (Ppg) = separable

= A SEPP map cannot create or INncrease entanglement

= like a LOCC map !
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Separability Preserving (SEPP)

= Every LOCC operation is separability preserving

= BUT the converse Is not true

= E.g. Consider the map

AEAi’Afp = SWAP operation

AN

A Z d p\®p. =), h A ®a

/

separable state

= SWAP iIs not a local operation
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= What is the maximum number of Bell states that can be
extracted from a single copy of JoNs using SEPP maps?

i.e.., what is the maximum value of M 2

/

“one-shot distillable entanglement of IOAB 7
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» Result :

“one-shot distillable entanglement of 0,g”

E i (IOAB )
®/

/ ND &F.Brandao

Min-relative entropy of entanglement
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One-Shot Entanglement Distillation

FA(P), P°™) >1-¢ for some given & >0

Then the maximum value of M.

One-shot g£ —error .
st = Eqin (Ps)
distillable entanglement min \/~'AB
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= where Ein(Oa) = Mmax E in (Oas)
b peB” (pag)

B°(p) =15 llp-plh<e)

smoothed min-relative entropy of entanglement

E* ()= min E,. (P)
A

= Similarly peB, (p)

e

-
smoothed max-relative entropy of entanglement

(operational significance in entanglement dilution
under SEPP maps)
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= Introduced 2 new relative entropies
(1) Min-relative entropy & (2) Max-relative entropy

Smin(Pll0)  <S(pllo) < Smxlpllo)

= Parent quantities for optimal one-shot rates for
= (I) data compression for a quantum info source

=(11) transmission of (a) classical info & (b) quantum info

through a quantum channel

=(111) entanglement manipulation
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Entanglement monotones

= Min-relative entropy of entanglement Emin (/OAB)

= Max-relative entropy of entanglement Emax (,OAB )

= Operational interpretations:

g

i (IOAB ) . One-shot distillable entanglement of O ag

under SEPP

Er‘;ax (,OAB ) . One-shot entanglement cost of Pg
under SEPP
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asymptotic, memoryless
scenario _-

-

A’

mother

2L\

/ \

entanglemer‘u\:
distillation

\

/
/
/

/
v

FQSW

noisy
teleportation

noisy superdense
coding

Family Tree of Quantum Protocols

entanglement-assisted
\

classical communi¢ation
\

\
\
\
\

quantum
communication
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One-shot FQSW parent

ND & Hsieh

b / \
entanglement

distiflation \

\

/

5 4

S (Pl O

FQSW [~

entanglement-assisted
\

classical communi¢ation
\

! no%y

/

/
v

teleportation \

\
\
\

noisy superdense
coding

quantum
communication
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