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The Harmonic System
Let A be a finite subset of Z9. The harmonic Hamiltonian
H,’} : Xp — R is given by

Hp (x) = ZPX—HUqu-FZ)\ — Gxie)’s
xEN
where x = (gx, px)yep and w, Aj > 0.
For any integer L > 1 and each subset A; = (—L,L]9 C Z9, the
flow d)?’L : Xp, — X, corresponding to Hf/I\L may be explicitly
computed.



A Lieb-Robinson Bound for the Harmonic System

The following is a Lieb-Robinson bound for the harmonic system
(H. Raz, R. Sims [3]).

Theorem

Let X, Y be finite subsets of Z9 and take Ly to be the minimal
integer such that X,Y C Ay,. For any L > Lo, denote by a?’L the
dynamics corresponding to H,/:L. For any p > 0 and any
observables A, B € AS\lL)O with supports in X and Y respectively,
there exists positive numbers C and vy, both independent of L,
such that the bound

[ttt (a).8Y| < cllall 1B

Lo min(| X, ‘y‘)efu(d(xvy)th\t\)

holds for all t € R.



General Set-Up

We will consider the Toda system in Z. To each integer n € Z, we
associate an oscillator with position g, € R and momentum

pn € R. The state of the system is described by a sequence

x = {(qn, Pn) } nez, and the phase space is denoted by X. The
(infinite volume) Hamiltonian Hr : X — R U {oo} for the Toda
lattice is given by

2
Pn
HT(X) = g ? + V(anrl - qn)
nez

where V(r) =e "+ r—1 and x = {(qn, Pn) } nez-



Hamilton's equations for this system are easy to write down: for
each n € Z,

anlt) = 50(0) = palt).
po(®) =~ 57H0) = V{ari — an) ~ V/(dn — 401)

_ e (@®=a1(0) _ g—(an(0)=an(0)),



Change of Variables
A convenient change of variables (commonly referred to as
Flaschka variables [1], [2]) is: for each n € Z and t € R, set

an(t) = %e_(qn+1(t)_q"(t))/2 and bn(t) = —%pn(t)
The corresponding system of equations of motion are

én(t) = an(t) (anrl(t)_bn(t))
ba(t) = 2(a5(t) = ap_q(1)) -



We will consider the Toda Hamiltonian restricted to the Banach
space M = (>°(Z) x £>°(Z). Each x € M will be written as
x = {(an, bn) }nez. The norm on M is given by

[[xl[m = max(sup [an|, sup [b])-
n n

For the Toda system one can prove existence and uniqueness of
the global solution on M. This is done in two stages. First one

proves local existence of a solution and then extends it globally.



Local Existence

Theorem

If xo = (a0, bo) € M then there exist § > 0 and a unique solution
(a(t), b(t)) = {(an(t), bn(t))}nez in C>°(I, M), where | = (—4,0),
of the Toda equations (1) such that (a(0), b(0)) = (ao, bo).



Global Existence
Corresponding to each xg € M, define the following operators
H(t), P(t) : £2(Z) — (*(Z), t € I, by setting

[H(t)f]” = a”(t)fn+1 + an—l(t)fn—l + bn(t)fna

[’D(t)f]n = an(t)fn—‘rl - an—l(t)fn—l-
A short calculation shows that P(t) and H(t) are a Lax-Pair

associated to (1), i.e.,

d

1) = [P(t), H(1)].



Since P(t) is skew-symmetric, it generates a two-parameter family
of unitary propagators U(t,s) [4]. Moreover, the Lax equation
implies that

H(t) = U(t,s)H(s)U(t,s)* V(t,s) e l.
Hence ||H(t)|, = ||H(0)||, and therefore

max ([|a(t)l| o » [[6(8)] o) < [[H(#)ll2 = [1H(O)]],

implying that the solution can be globally extended.



Class of observables we consider
We will denote by A() the set of all observables A for which

Azl

is finite. An observable A is said to be supported in X C Z if the
observables A and aA are identically zero for all n € Z\ X. The

0A

0A
|Ally o0 = sup max <'
’ neZ 0

Obp

support of an observable A is the minimal set on which Ais

supported.



We will denote by a; the Toda dynamics, i.e., a; : A — A defined

by setting
ar(A) = Ao d(t),

where ®(t) is the corresponding Toda flow.
If A€ A and B € A are functions of g,'s and p,'s, n € Z, then
the Poisson bracket between them is defined as

0A 0B 0A 0B
A, B}(x) = - ’

where x = {(qn, Pn)}pez- If A€ Aand B € A are functions of

an's and b,'s, n € Z, then the modified Poisson bracket is

1 0A OB OA OB
{A,B}(x) = 4%;% <8an8cn " oc, 8an> ’

wherex = (an b))z 300 s = i~



Main Result
The following is a Lieb-Robinson bound for the Toda System.

Theorem
Let xo = {(an, bn)}nez € M. Then, for every ;s > O there exists a
number v = v(u,xq) for which given any observables A, B € A(%)

with finite supports X and Y respectively, the estimate

1,oo||B||1,OOSUP|3n| Z e~ H([n—m|—v]t])
" neX,meyY

{ae(A), B (xo)[ < [|A

holds for all t € R. Here

1
v(p,x0) = 18¢ <e“+1 + M) ,

where ¢ = c(x¢) = ||H(0)||2.



Sketch of the Proof A short calculation shows that

[{ee(A), BY(x0)| < [|Ally 00 | Blly,00 stip [2nl

1 /| 0an(t) Oby(t)
% Z 2< Oam ‘83,,,
neX,meyY
+E Oap(t) Oap(t) Oby(t) Oby(t)
4 \ |Obmy1 Obm Obm+1 Obm |}~

Let ®,(t) denote the nth component of the flow ®(t,xp), i.e.,

®u(t) = ( 28 ) -
Clearly,

() = &(0) + /0 ( 25()(2‘(’;1_”2‘1‘(75)5” ) ds.

Let ¢/ (t) = 6":9”(t), where z € {am, bm, bm+1}. WLOG we take

z

z = apm. Then differentiating the above equality with respect to z



4mn=%m<;>+214mﬁ@%%@$

le[<1
where
b (ﬂ_< (bri1(s) = ba(s)) doe) %@mﬁaa+a@»>_
ne 4(an(s)d0(e) — an_1(s)5_1(e)) 0

For any v = (x,y) € R? take |v|| = max(|x|,|y|). Then by taking
the norm of both sides we get

[®5(0)]] < dm(n) + 1 Z/O |/, (5)]| ds,

le[<1

where ¢; =6 ||H(0)||,.



By iterating the above inequality we obtain

) o k
Jor) < > Caltl

k=|n—ml|

which implies that for any >0
Hq;;(t)H < e Hlln=ml=vit])

where v = v(u,x0) = 18 ||H(0)||, (e + %)

Remark
Similar Lieb-Robinson bounds can be proven in general for the
Toda Heirarchy.



Similar Result for Another Class of Observables
Similar Lieb-Robinson bound is valid for another class of
observables A consisting of all observables A and B for which

2
|Al|2,00 = max JZ wZ

2

0A
Oan,

0A
Oby,

o0



Some Numerics

In this example we consider the Toda system in the finite volume

and assume periodic boundary conditions. The number of particles
N =100. a,(0) =1/2 Vn and b,(0) = 0 Vn # 50, bsp(0) = 1.
The values of a,(t), 1 < n < 100, over the time interval [0, 10] are

plotted below.
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Perturbations of the Toda system
Let W : R — [0,00) such that W € C2(R) and W/, W" € L**(R).
We define a Hamiltonian HY : X — R U {co} by setting

HY (x) (x)+ > W(an),

ne€Z
where x = {(ap, bn) }nez. Hence the corresponding system of

equations of motion are

where
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Local Existence

It is easy to see that there exists a unique local C? solution

(a(t), b(t)) on I(xg) = (=9, 0) of the above Toda equations if the
initial condition xo = (ap, bo) € M. Let o}V denote the perturbed
Toda dynamics, i.e., o)V : A — A defined by setting

alA/(A):Ao(DyV’

where <D,‘:/V is the corresponding perturbed Toda flow. Define the
operators P(t) and H(t), t € I(x¢) as before. Let U(t,s) be the
family of unitary propagators for P(t). A simple calculation shows
that

d
S H(E) = [P(0), H(O] + R(2),

where R(t) is a bounded linear operator in £2(Z) given by

[R(t)f]n = Rn(t)fn.



22

Let H(t) = U(t,s)*H(t)U(t,s). Then ||H(t)|l2 = ||H(t)||, and by

the similar earlier calculations we get

£ A(0) = Ut 9 ROU(E, 9)

Hence

t

H(t) = H(0) —|—/ U(r,s)"R(T)U(r, s)d.

0
By taking the norm we get

1 , t
IOl < IHO)+ 5 Wl [ 1Hl dr

By Gronwall’s lemma he have
IH(®)]l, < cre',

implying the global

oo’

where ¢; = ||[H(0)|, and ¢ = | W/||

existence of the solution.
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Another Main Result

Theorem

Let xo = {(an, bn)}nez € M. Then, for every x>0 and T > 0
there exists a number v = v(u,xo, W, T) for which given any
observables A, B € AN with finite supports X and Y respectively,
the estimate

[{at"(A), BY(x0)| < [|Ally 0 1Blly o0 5up lan] D e7In=mi=vIe)
n neX,meyY
holds for all t € (—T, T). Here

1
V(/’L7X07 W7 T) =c <eﬂ+1 + ) )
1%

where

2 (3 |W”|l, +18) [[HO)|, [Vl —1Y 3
= HW’H) : T +5 W
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Sketch of the Proof We follow the argument as in the proof of

the previous theorem. In fact, keeping similar notation, one gets

o] <o)+ 3 [ (5)[@)c(5)] 0

le|<1

where f(s) = c3 [|H(s)|, + 3c2, with ¢z = 3 ||W”||, + 6. Iteration

implies that
:Z 13(3 /0 t f(T)dT>k
()" S[ g(t) ]'”"”' I8 (2)

k! |n— m|

[EHG]

IN

IA
WE
0

k=|n—m|
where g(t) = %(eqm — 1) + 3c|t|. Given any p > 0. Then as
we argued in the previous theorem one can show that
— —ml|— u+1y 1
o5 0)] < eHrmmimete e,

3ac(e?2—-1)
Scr

where ¢ = + %Cz-
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Some Numerics

In this example we consider a perturbed Toda system in the finite

volume and assume periodic boundary conditions. We take
=100 and W/(x) = 3 cos(2mx). a,(0) = 1/2 Vn and b,(0) = 0

Vn ;é 50, bsp(0) = 1. The values of a,(t), 1 < n < 100, over the

time interval [0, 10] are plotted below.
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