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The Harmonic System

Let Λ be a finite subset of Zd . The harmonic Hamiltonian

HΛ
h : XΛ → R is given by

HΛ
h (x) =

∑
x∈Λ

p2
x + ω2q2

x +
d∑

j=1

λj(qx − qx+ej )
2,

where x = (qx , px)x∈Λ and ω, λj ≥ 0.

For any integer L ≥ 1 and each subset ΛL = (−L, L]d ⊂ Zd , the

flow Φh,L
t : XΛL

→ XΛL
corresponding to HΛL

h may be explicitly

computed.
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A Lieb-Robinson Bound for the Harmonic System

The following is a Lieb-Robinson bound for the harmonic system

(H. Raz, R. Sims [3]).

Theorem

Let X ,Y be finite subsets of Zd and take L0 to be the minimal

integer such that X ,Y ⊂ ΛL0 . For any L ≥ L0, denote by αh,L
t the

dynamics corresponding to HΛL
h . For any µ > 0 and any

observables A,B ∈ A(1)
ΛL0

with supports in X and Y respectively,

there exists positive numbers C and vh, both independent of L,

such that the bound∥∥∥{αh,L
t (A),B}

∥∥∥
∞
≤ C ‖A‖1,∞ ‖B‖1,∞min(|X |, |Y |)e−µ(d(X ,Y )−vh|t|)

holds for all t ∈ R.
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General Set-Up

We will consider the Toda system in Z. To each integer n ∈ Z, we

associate an oscillator with position qn ∈ R and momentum

pn ∈ R. The state of the system is described by a sequence

x = {(qn, pn)}n∈Z, and the phase space is denoted by X . The

(infinite volume) Hamiltonian HT : X → R ∪ {∞} for the Toda

lattice is given by

HT (x) =
∑
n∈Z

p2
n

2
+ V (qn+1 − qn)

where V (r) = e−r + r − 1 and x = {(qn, pn)}n∈Z.



6

Hamilton’s equations for this system are easy to write down: for

each n ∈ Z,

q̇n(t) =
∂HT

∂pn
(t) = pn(t),

ṗn(t) = −∂HT

∂qn
(t) = V ′(qn+1 − qn)− V ′(qn − qn−1)

= e−(qn(t)−qn−1(t)) − e−(qn+1(t)−qn(t)).
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Change of Variables

A convenient change of variables (commonly referred to as

Flaschka variables [1], [2]) is: for each n ∈ Z and t ∈ R, set

an(t) =
1

2
e−(qn+1(t)−qn(t))/2 and bn(t) = −1

2
pn(t).

The corresponding system of equations of motion are

ȧn(t) = an(t) (bn+1(t)− bn(t))

ḃn(t) = 2
(
a2
n(t)− a2

n−1(t)
)
. (1)
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We will consider the Toda Hamiltonian restricted to the Banach

space M = `∞(Z)× `∞(Z). Each x ∈ M will be written as

x = {(an, bn)}n∈Z. The norm on M is given by

‖x‖M = max(sup
n
|an|, sup

n
|bn|).

For the Toda system one can prove existence and uniqueness of

the global solution on M. This is done in two stages. First one

proves local existence of a solution and then extends it globally.
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Local Existence

Theorem

If x0 = (a0, b0) ∈ M then there exist δ > 0 and a unique solution

(a(t), b(t)) = {(an(t), bn(t))}n∈Z in C∞(I ,M), where I = (−δ, δ),

of the Toda equations (1) such that (a(0), b(0)) = (a0, b0).
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Global Existence

Corresponding to each x0 ∈ M, define the following operators

H(t), P(t) : `2(Z)→ `2(Z), t ∈ I , by setting

[H(t)f ]n = an(t)fn+1 + an−1(t)fn−1 + bn(t)fn,

[P(t)f ]n = an(t)fn+1 − an−1(t)fn−1.

A short calculation shows that P(t) and H(t) are a Lax-Pair

associated to (1), i.e.,

d

dt
H(t) = [P(t),H(t)].
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Since P(t) is skew-symmetric, it generates a two-parameter family

of unitary propagators U(t, s) [4]. Moreover, the Lax equation

implies that

H(t) = U(t, s)H(s)U(t, s)∗ ∀(t, s) ∈ I .

Hence ‖H(t)‖2 = ‖H(0)‖2 and therefore

max (‖a(t)‖∞ , ‖b(t)‖∞) ≤ ‖H(t)‖2 = ‖H(0)‖2 ,

implying that the solution can be globally extended.
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Class of observables we consider

We will denote by A(1) the set of all observables A for which

‖A‖1,∞ = sup
n∈Z

max

(∥∥∥∥ ∂A

∂an

∥∥∥∥
∞
,

∥∥∥∥ ∂A

∂bn

∥∥∥∥
∞

)
is finite. An observable A is said to be supported in X ⊂ Z if the

observables ∂A
∂an

and ∂A
∂bn

are identically zero for all n ∈ Z \ X . The

support of an observable A is the minimal set on which A is

supported.
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We will denote by αt the Toda dynamics, i.e., αt : A → A defined

by setting

αt(A) = A ◦ Φ(t),

where Φ(t) is the corresponding Toda flow.

If A ∈ A and B ∈ A are functions of qn’s and pn’s, n ∈ Z, then

the Poisson bracket between them is defined as

{A,B}(x) =
∑
n∈Z

(
∂A

∂qn

∂B

∂pn
− ∂A

∂pn

∂B

∂qn

)
,

where x = {(qn, pn)}n∈Z. If A ∈ A and B ∈ A are functions of

an’s and bn’s, n ∈ Z, then the modified Poisson bracket is

{A,B}(x) =
1

4

∑
n∈Z

an

(
∂A

∂an

∂B

∂cn
− ∂A

∂cn

∂B

∂an

)
,

where x = {(an, bn)}n∈Z and ∂
∂cn

= ∂
∂bn+1

− ∂
∂bn

.
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Main Result

The following is a Lieb-Robinson bound for the Toda System.

Theorem

Let x0 = {(an, bn)}n∈Z ∈ M. Then, for every µ > 0 there exists a

number v = v(µ, x0) for which given any observables A,B ∈ A(1)

with finite supports X and Y respectively, the estimate

|{αt(A),B}(x0)| ≤ ‖A‖1,∞ ‖B‖1,∞ sup
n
|an|

∑
n∈X ,m∈Y

e−µ(|n−m|−v |t|)

holds for all t ∈ R. Here

v(µ, x0) = 18c

(
eµ+1 +

1

µ

)
,

where c = c(x0) = ‖H(0)‖2.
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Sketch of the Proof A short calculation shows that

|{αt(A),B}(x0)| ≤ ‖A‖1,∞ ‖B‖1,∞ sup
n
|an|

×
∑

n∈X ,m∈Y

1

2

(∣∣∣∣∂an(t)

∂am

∣∣∣∣+

∣∣∣∣∂bn(t)

∂am

∣∣∣∣)

+
1

4

(∣∣∣∣∂an(t)

∂bm+1

∣∣∣∣+

∣∣∣∣∂an(t)

∂bm

∣∣∣∣+

∣∣∣∣∂bn(t)

∂bm+1

∣∣∣∣+

∣∣∣∣∂bn(t)

∂bm

∣∣∣∣) .
Let Φn(t) denote the nth component of the flow Φ(t, x0), i.e.,

Φn(t) =

(
an(t)

bn(t)

)
.

Clearly,

Φn(t) = Φn(0) +

∫ t

0

(
an(s) (bn+1(s)− bn(s))

2
(
a2
n(s)− a2

n−1(s)
) )

ds.

Let Φ′n(t) = ∂Φn(t)
∂z , where z ∈ {am, bm, bm+1}. WLOG we take

z = am. Then differentiating the above equality with respect to z

we get
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Φ′n(t) = δm(n)

(
1

0

)
+
∑
|e|≤1

∫ t

0
Dn+e(s)Φ′n+e(s)ds,

where

Dn+e(s) =

(
(bn+1(s)− bn(s)) δ0(e) an(s)(−δ0(e) + δ1(e))

4(an(s)δ0(e)− an−1(s)δ−1(e)) 0

)
.

For any v = (x , y) ∈ R2 take ‖v‖ = max(|x |, |y |). Then by taking

the norm of both sides we get

∥∥Φ′n(t)
∥∥ ≤ δm(n) + c1

∑
|e|≤1

∫ t

0

∥∥Φ′n+e(s)
∥∥ ds,

where c1 = 6 ‖H(0)‖2.
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By iterating the above inequality we obtain

∥∥Φ′n(t)
∥∥ ≤ ∞∑

k=|n−m|

(3c1|t|)k

k!
,

which implies that for any µ > 0∥∥Φ′n(t)
∥∥ ≤ e−µ(|n−m|−v |t|).

where v = v(µ, x0) = 18 ‖H(0)‖2 (eµ+1 + 1
µ).

Remark

Similar Lieb-Robinson bounds can be proven in general for the

Toda Heirarchy.
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Similar Result for Another Class of Observables

Similar Lieb-Robinson bound is valid for another class of

observables A(2), consisting of all observables A and B for which

‖A‖2,∞ = max

√√√√∑
n

∥∥∥∥ ∂A

∂an

∥∥∥∥2

∞
,

√√√√∑
n

∥∥∥∥ ∂A

∂bn

∥∥∥∥2

∞

 <∞.
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Some Numerics

In this example we consider the Toda system in the finite volume

and assume periodic boundary conditions. The number of particles

N = 100. an(0) = 1/2 ∀n and bn(0) = 0 ∀n 6= 50, b50(0) = 1.

The values of an(t), 1 ≤ n ≤ 100, over the time interval [0, 10] are

plotted below.
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Perturbations of the Toda system

Let W : R→ [0,∞) such that W ∈ C 2(R) and W ′,W ′′ ∈ L∞(R).

We define a Hamiltonian HW : X → R ∪ {∞} by setting

HW
T (x) = HT (x) +

∑
n∈Z

W (an),

where x = {(an, bn)}n∈Z. Hence the corresponding system of

equations of motion are

ȧn(t) = an(t) (bn+1(t)− bn(t)) ,

ḃn(t) = 2
(
a2
n(t)− a2

n−1(t)
)

+ Rn(t),

where

Rn(t) =
1

4
(W ′(an(t))an(t)−W ′(an−1(t))an−1(t)).
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Local Existence

It is easy to see that there exists a unique local C 2 solution

(a(t), b(t)) on I (x0) = (−δ, δ) of the above Toda equations if the

initial condition x0 = (a0, b0) ∈ M. Let αW
t denote the perturbed

Toda dynamics, i.e., αW
t : A → A defined by setting

αW
t (A) = A ◦ ΦW

t ,

where ΦW
t is the corresponding perturbed Toda flow. Define the

operators P(t) and H(t), t ∈ I (x0) as before. Let U(t, s) be the

family of unitary propagators for P(t). A simple calculation shows

that
d

dt
H(t) = [P(t),H(t)] + R(t),

where R(t) is a bounded linear operator in `2(Z) given by

[R(t)f ]n = Rn(t)fn.
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Let H̃(t) = U(t, s)∗H(t)U(t, s). Then ‖H̃(t)‖2 = ‖H(t)‖2 and by

the similar earlier calculations we get

d

dt
H̃(t) = U(t, s)∗R(t)U(t, s).

Hence

H̃(t) = H̃(0) +

∫ t

0
U(τ, s)∗R(τ)U(τ, s)dτ.

By taking the norm we get

‖H(t)‖2 ≤ ‖H(0)‖2 +
1

2

∥∥W ′∥∥
∞

∫ t

0
‖H(τ)‖2 dτ.

By Gronwall’s lemma he have

‖H(t)‖2 ≤ c1ec2|t|,

where c1 = ‖H(0)‖2 and c2 = 1
2 ‖W

′‖∞, implying the global

existence of the solution.
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Another Main Result

Theorem

Let x0 = {(an, bn)}n∈Z ∈ M. Then, for every µ > 0 and T > 0

there exists a number v = v(µ, x0,W ,T ) for which given any

observables A,B ∈ A(1) with finite supports X and Y respectively,

the estimate

|{αW
t (A),B}(x0)| ≤ ‖A‖1,∞ ‖B‖1,∞ sup

n
|an|

∑
n∈X ,m∈Y

e−µ(|n−m|−v |t|)

holds for all t ∈ (−T ,T ). Here

v(µ, x0,W ,T ) = c

(
eµ+1 +

1

µ

)
,

where

c =
2
(

3
4 ‖W

′′‖∞ + 18
)
‖H(0)‖2

‖W ′‖∞

(
e

T
2
‖W ′‖∞ − 1

T

)
+

3

2

∥∥W ′∥∥
∞ .
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Sketch of the Proof We follow the argument as in the proof of

the previous theorem. In fact, keeping similar notation, one gets∥∥Φ′n(t)
∥∥ ≤ δm(n) +

∑
|e|≤1

∫ t

0
f (s)

∥∥Φ′n+e(s)
∥∥ ds,

where f (s) = c3 ‖H(s)‖2 + 1
2 c2, with c3 = 1

4 ‖W
′′‖∞ + 6. Iteration

implies that∥∥Φ′n(t)
∥∥ ≤

∞∑
k=|n−m|

1

k!

(
3

∫ t

0
f (τ)dτ

)k

≤
∞∑

k=|n−m|

g(t)k

k!
≤
[

g(t)

|n −m|

]|n−m|
e |n−m|eg(t), (2)

where g(t) = 3c1c3
c2

(ec2|t| − 1) + 3
2 c2|t|. Given any µ > 0. Then as

we argued in the previous theorem one can show that∥∥Φ′n(t)
∥∥ ≤ e−µ(|n−m|−c(eµ+1+ 1

µ
)|t|)

,

where c = 3c1c3(eδc2−1)
δc2

+ 3
2 c2.
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Some Numerics

In this example we consider a perturbed Toda system in the finite

volume and assume periodic boundary conditions. We take

N = 100 and W (x) = 1
2 cos(2πx). an(0) = 1/2 ∀n and bn(0) = 0

∀n 6= 50, b50(0) = 1. The values of an(t), 1 ≤ n ≤ 100, over the

time interval [0, 10] are plotted below.
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