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Introduction

* What is the structure of gapped one-dimensional quantum phases?

* |s the AKLT phase different from e.g. a dimerized system,
or a trivial (product) phase? (And if yes, in which sense?)

* Is there an analogy to topological protection in one dimension?

e This talk:

Classification of gapped 1D phases in the Matrix Product state formalism

» Structure of the talk:

- what are Matrix Product States (MPS)

- what do | mean by “phases”

- phases in the MPS formalism

- standard form of MPS for classification of phases
- classification of gapped phases

- classification of phases under symmetries




The area law

h;
« H = ). h; local Hamiltonian ® &6 6—0 o o o o

— can we characterize the ground state |¥) ?

* Problem: exponentially large Hilbert space! —

« However: H = )" h; has relatively few parameters
|Wo) lives in small corner of Hilbert space -

e Guideline for suitable ansatz states?
» Area law for ground states:
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PL [Hastings, JSTAT '07]

- entanglement located around the boundary
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Matrix Product States

 Local description of many-body states with area law?
® [ _ ®C“
T’P T’P TP “Matrix Product States” (MPS)

@@

 system with entropic area law < well described by MPS
[Verstraete & Cirac, PRB '06; Hastings, JSTAT '07; Schuch et al., PRL '08]

St |9)]4)

 describe ground/thermal states of local Hamiltonians efficiently
[Hastings, PRB '06, PRB '07, JSTAT '07]

 toolbox for exactly solvable models:
- MPS are exact ground states of local Hamiltonians
- many properties can be computed analytically




The AKLT state, and parent Hamiltonians

« Example: AKLT state [Affleck, Kennedy, Lieb & Tasaki, PRL '87]
P2 subspace hasspin 1 ® 1 =04 1 aX
AL

" S=1 .‘321
T'p T’P P . projector onto S = 1 subspace
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« Hamiltonian: H = > _h; ,with h; =Ils—2 = h;|Vakrr) =0

non-existent

« |VakrT) is unique ground state of /, and H has a spectral gap

« Every MPS has an associated parent Hamiltonian with
- unique ground state or fixed degeneracy
- spectral gap [Fannes, Nachtergaele, Werner, CMP '92; Nachtergaele, CMP '96]




Framework for classification of phases

» we will study systems with exact MPS ground states

* same phase <> we can interpolate without phase transition

N N
e« Hy=> ho(i,i+1), Hi = > hi(i,i+1) arein same phase _
i=1 i=1 H(1)

iff there exists Hy = > h-(i,7+ 1) s.th.

- h~ continous and bounded

- H. is uniformly gapped in v and N

 we allow blocking P
of a constant number of sites 4 A

. we allow for ancillas m

- extension: what if we impose symmetries [H,, UP"N] =0 ?




Classification using MPS

« state «» Hamiltonian duality: perform classification for states

|)u’[’ﬁ,0]). |}‘L[’P-y]) o |)u’[’ﬁ,1])
|H[PU]>'ﬁ l i |p[P1])
Oa H. o]
Hy e ® H;

« construct interpolating path P~ from Py to P;
— need to ensure continuity and gappedness!

 simplify interpolation using normal form
- first interpolate to normal form (well-conditioned)
- then interpolate between normal forms (simple structure)




The isometric form

Q . '/ isometry

Qr =2AQ + (1 —X)

-—»-

P=QW Pr=QxW
polar decomposition
@ > 0, W isometry

- |HJ[73]> A =0
- path of states |u[P]) = Q™ |u[P]) o
- continuous path of Hamiltonians PA
_ _ w\P|) @)=
« Hamiltonians uniformly gapped
follows from [Fannes, Nachtergaele, Werner, CMP '92;
Nachtergaele, CMP '96] o

« path commutes with symmetry
» classification reduces to isometric form

isometric form




Classification — unique ground states

 systems with unique ground state:

O O
T” P injective Isometric TW W unitary

@ ®- (bijective) “form . -@li®-

» isometric form (up to basis choice):
h

Q h =1 — |wp){wbD|
N o) = > lili)

* interpolation between different D and D’ :

|w(0)) :=0|lwp) + (1 = 0)|wp) h(0) =1 — [w(8))(w(0)]

— characterized only by D

= all states in the same phase




Classification — degenerate ground states

» systems with A-fold degenerate ground state
— isometric form (up to basis choice):

A hcuz = :“-_Elaaa)<aaa|

hcuz lea"”’a>
)/a_ he =§|a)(a|(1— |wp.){wD.|)
i _/ B

lwp,,) h, — commuting, since |«) “classical”
(locally broken symmetry!)

« interpolation between different D, and D.:

|wa(0)) := Olwp,) + (1 = 0)|wp )

he (0) = 3 la)(a|(1 — |wa(0)){wa(0)])

o

= all systems with same ground state degeneracy .A in the same phase




Classification of phases without symmetries

» Classification of Hamiltonians with MPS ground states

* Hi, Hy in same phase <> smooth gapped path H, exists

4 N

Systems with same ground state
degeneracy A are in the same phase.
Different degeneracies label different phases.

. J

* Proof steps:

- MPS < parent Hamiltonian duality

- construct path of states |1.[P-]) — induces path H,

- isometric form P = QW — P = W isin same phase
- classify phases for isometric forms

- isometric form = commuting parent Hamiltonian = simple class.




Phases under symmetries

* Phases under symmetries:

Impose constraint [H,, US| =0

on interpolating path H, H()

« U, : unitary representation of symmetry group &, >
UgUh - Ugh [eg G =2o,G =70 X Lo, G = SO(B) ]

 Different representations Ugﬂ Ug1 (e.g. spin-0 and spin-1 SO(3) ):

— require invariance of H., under U, = U, & U,

« symmetry of H., < symmetry of corresponding MPS |u[P,])

n[Py]) =USN|u[P+])  (maybe with some phases ... )




MPS and symmetries

* How is symmetry |u[P]) = US"|u[P]) reflected inP ?

 Restrict to injective MPS:

[ k[P =USN|ulP)) & U,P=P(V,87,) ]

e fransformation to isometric form
Py = Q\W keeps symmetry

 symmetry action in isometric form:

=V, /Y, V- in some fixed basis
- impose symmetry via U, = U, & U,,: _vO0 YO_y0 O
= basis choice unambiguous g@ g g@ g




Projective representations

* What is the structure of V; ?

U, =P UP=V,0V, projective representation
UgUh = Ugh VoV = eiw(g’h)%h

Vy only defined up to phase V, <« ity v, :

equivalence classes w(g,h) ~ w(g,h) + dgn — Pg — Gn

— equivalence classes form group: 2™ cohomology group H*(G, C)

Example 1: G = Z2 ® Z2 = {(0,0),(0,1),(1,0),(1,1)} Example 2:
spin- 3 repres. of SO(3):

Voo=1 |Vie=Z2||Vor1Vie=XZ=—1Y = —2 V11
Vor=X1Vii=Y || VioVo1 =Z2ZX =:1Y =11 Vi1

V10V01V1T0%T1 =XZXZ=-1

exp[2miS;] = —1

o \N/i : : - ¢ [cf. Pollmann et al., PRB '10;
will show: Equivalence class of w determines phase! Chen, Gu. Wen. PRB "11]




Interpolation with same cohomology class

. 0 _ 1/0 o 770 1 _ /1 o 171 . _

Interpolate from U, =V, @V toU, =V, ®V, LVO VR o ve
- ® D

* Interpolate along path w/ symmetry V; ® V;, where =Vt V—V V-

[cf. Chen, Gu, Wen, PRB '11]

V0
ng( Vl)
)

Dy Do+D, E;D 1?;.0
with interpolating path |ws) = F)Z i,2) + (1 —0) Z i,1) B B
i=1 i=Dg+1 El Tél

» key point: V; is still projective representation:

VDV}? eiw(ggh)vﬂh
Yot ( 9 111 ) N T h = e @MV,
v,V el ohy L

- Note: interpolation is in too big space: (V) & V') @ (V) ® V,}) instead of
(Vi@ VY e (V) @ V,)'), but this can be fixed (using ancillas or blocking)




Separation of phases

- What if V) and V' belong to different equivalence classes?

 problem: V, is not a representation:

( Vg”V;? ( eiwu(gﬁ)vgﬂh

VgV =

) # e’iw(g,h) .‘/gh

Vgl Vh,l ) eéwl(gﬁ)vglh

* how to prove impossibility of interpolation?

[Hw smooth & gapped] o [\;L[P]) smooth] — [73' smooth]\

K[Vg (up to phase) smooth] N [Vg RV, =P tU,P smooth]

[ dw(g,h) = 84+ 6n — 61 |

\> equivalence class of w cannot change!




Degenerate systems: Phases under symmetries

» What if system has degenerate ground state?

w > lay ..., a)

[

 Action of symmetry on virtual level:

U P =PP, (P e vy

P, permutes different ground state sectors «

a7y

Vy" induced representation from projective representation V;
of the subgroup G D H = {h € G: Py(aw) = v}

* In addition to degeneracy:

Phases labelled b : nd ar(element of H*(H, C) I)

= permutation = equivalence class of
action P, projective representation 1,




Summary

» classification of 1D systems with exact Matrix Product ground states
 phases defined by paths of gapped Hamiltonians
 MPS < parent Hamiltonians: construct path of states

* Isometric form: - same phase
- captures long-range properties
- commuting parent Hamiltonian

o Classification without symmetries:

Phases labelled by ground state degeneracy.

* Classification with on-site symmetry Uy :

' Phases additionally labelled by
- subgroup H of symmetry group
- equivalence classes of proj. representations of H

\ v




