
GALOIS DEFORMATION AND L-INVARIANT

HARUZO HIDA

1. Lecture 2

Let p > 2 be a prime, and fix a totally real finite extension F/Q. For simplicity,
we assume that p splits completely in F/Q. We start with a Galois representation
ρF : Gal(Q/F ) → GL2(W ) associated to a discrete series Hilbert modular form
f (over F ) with coefficients in a finite extension W/Zp (a DVR). We assume the
ordinarity of ρF :

ρF |Dp
∼=

(
εp ∗
0 αp

)
with εp 6= αp, εp|Ip = N k−1 and αp(Ip) = 1

on the decomposition group and the inertial group Ip ⊂ Dp ⊂ Gal(Q/F ) for all
prime factor p of p in F . Here N (σ) ∈ Z×

p is the p-adic cyclotomic character with

exp(2πi
pn )σ = exp(N (σ)2πi

pn ) for all n > 0 and k > 1 is an integer. Again for simplicity,

we assume that ρ is unramified outside p. Thus for any prime l - p, writing f |T (l) =
alf , we have Tr(ρ(Frobl)) = al ∈ W . Let K be the quotient field of W (so, K/Qp is
a finite extension).

We consider the universal nearly ordinary deformation ρ : Gal(Q/F ) → GL2(R)
over K with the pro-Artinian local universal K-algebra R. This means that for any
Artinian local K-algebra A with maximal ideal mA and any Galois representation
ρA : Gal(Q/F ) → GL2(A) such that

(K1) unramified outside p;
(K2) ρA|Gal(Qp/Fp)

∼= ( ∗ ∗
0 αA,p ) with αA,p ≡ αp mod mA;

(K3) det(ρA) = det ρF ;
(K4) ρA ≡ ρF mod mA,

there exists a unique K-algebra homomorphism ϕ : R → A such that ϕ ◦ ρ ∼= ρA.
Note that N : Gal(Fp[µp∞ ]/Fp) ∼= Z×

p (by splitting of p in F/Q). Let Γp = 1 + pZp ⊂
Gal(Fp[µp∞]/Fp). Choose a generator γp of Γp and identify W [[Γp]] with W [[Xp]] by
γp ↔ 1+Xp. Since ρ|Gal(Qp/Fp)

∼= ( ∗ ∗
0 δp ), δpα

−1
p : Γp → R induces an algebra structure

on R over W [[Xp]]. Thus R is an algebra over K[[Xp]]p|p. If we write ϕ : R → K for
the morphism with ϕ ◦ ρ ∼= ρF , by our construction, Ker(ϕ) ⊇ (Xp)p|p.
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Here is the theorem we have seen in the first lecture:

Theorem 1.1. Suppose R ∼= K[[Xp]]p|p. Then, if ϕ ◦ ρ ∼= ρF , for the local Artin
symbol [p, Fp] = Frobp, we have

L(IndQ
F Ad(ρF )) = L(Ad(ρF )) = det

(
∂δp([p, Fp])

∂Xp′

)

p,p′

∣∣∣
X=0

∏

p

logp(γp)αp([p, Fp])
−1.

Greenberg proposed a conjectural formula of the L–invariant for a general p-adic
p-ordinary Galois representation V with an exceptional zero. When V = Ad(ρF ),
his definition goes as follows. Under some hypothesis, he found a unique subspace
H ⊂ H1(F,Ad(ρF )) of dimension e = |{p|p}| represented by cocycles c : Gal(Q/F ) →
Ad(ρF ) such that

(1) c is unramified outside p;
(2) c restricted to Dp is upper triangular after conjugation for all p|p.

By the condition (2), c|Ip modulo upper nilpotent matrices factors through the cyclo-
tomic Galois group Gal(Qp[µp∞ ]/Qp) because Fp = Qp, and hence c|Dp modulo upper
nilpotent matrices becomes unramified everywhere over the cyclotomic Zp-extension
F∞/F . In other words, the cohomology class [c] is in SelF∞(Ad(ρF )) but not in
SelF (Ad(ρF )).

Take a basis {cp}p|p of H over K. Write

cp(σ) ∼
(
−ap(σ) ∗

0 ap(σ)

)
for σ ∈ Dp′ with any p′|p.

Then ap : Dp′ → K is a homomorphism. His L-invariant is defined by

L(Ad(ρF )) = det
(
(ap([p, Fp′])p,p′|p

(
logp(γp′)

−1ap([γp′, Fp′]))p,p′|p
)−1

)
.

The above value is independent of the choice of the basis {cp}p. Then assuming the
following two conditions:

(1) ρ = (ρF mod mW ) is absolutely irreducible over Gal(Q/F [µp]);
(ds) ρss has a non-scalar value over Gal(F p/Fp) for all prime factors p|p,

by using a result of Taylor-Wiles and Fujiwara (see Fujiwara’s paper: arXiv.math.NT/0602606),
we can prove R ∼= K[[Xp]], and the following conjecture for the arithmetic L-function
is a theorem except for the nonvanishing L(Ad(ρF )) 6= 0 (see [H00] Theorem 6.3 (4)):

Conjecture 1.2 (Greenberg). Suppose ((ds) and that ρ is absolutely irreducible. For
Larith

p (s,Ad(ρF )) = Φarith(γs − 1), then Larith
p (s,Ad(ρF )) has zero of order equal to

d = [F : Q] and for the constant L(Ad(ρF )) ∈ K× specified by the determinant as in
the theorem, we have

lim
s→1

Larith
p (s,Ad(ρF ))

(s − 1)d
= L(Ad(ρF ))E+(Ad(ρF ))

∣∣|SelQ(IndQ
F Ad(ρF )∗)|

∣∣−1/[K:Qp]

p

up to units.
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In the following section, we describe the Selmer group and how to define H.

1.1. Selmer Groups. We recall Greenberg’s definition of Selmer groups. Write
F (p)/F for the maximal extension unramified outside p and ∞. Put G = Gal(F (p)/F )
and GM = Gal(F (p)/M). Let V = Ad(ρF ) with a continuous action of G. We fix a
W -lattice T in V stable under G.

Write D = Dp ⊂ G for the decomposition group of each prime factor p|p. Choosing
a basis of ρF so that ρF |D is upper triangular. We have a 3-step filtration:

(ord) V ⊃ F−
p V ⊃ F+

p V ⊃ {0},
where taking a basis so that ρF |D is upper triangular, F−

p V is made up of up-
per triangular matrices and F+

p V is made up of upper nilpotent matrices, and on
F−

p V/F+
p V , D acts trivially (getting eigenvalue 1 for Frobp). Since V is self-dual, its

dual V ∗(1) = HomK(V,K) ⊗N again satisfies (ord).
Let M/F be a subfield of F (p), and put GM = Gal(F (p)/M). We write p for a

prime of M over p and q for general primes of M . We put

Lp(V ) = Ker(Res : H1(Mp, V ) → H1(Ip,
V

F+
p (V )

)).

Then for a GM -stable W -lattice T of V , we define for the image Lp(V/T ) of Lp(V )
in H1(Mp, V/T )

(1.1) SelM (A) = Ker(H1(GM , A) →
∏

p

H1(Mp, A)

Lp(A)
)) for A = V, V/T .

The classical Selmer group of V is given by SelM(V/T ), equipped with discrete topol-
ogy. Write F∞ for the cyclotomic Zp–extension of F . We define “−” Selmer group
replacing Lp(A) by

L−
p (V ) = Ker(Res : H1(Mp, V ) → H1(Ip,

V

F−
p (V )

)).

Lemma 1.3. Suppose R ∼= K[[Xp]]p|p. Then Sel−F (V ) ∼= HomK(mR/m2
R,K) and

SelF (V ) = 0.

Proof. We consider the space DerK(R,K) of continuous K-derivations. Let K[ε] =
K[t]/(t2) for the dual number ε = (t mod t2). Then writing K-algebra homomor-
phism φ : R → K[ε] as φ(r) = φ0(r) + φ1(r)ε and sending φ to φ1 ∈ DerK(R,K), we
have HomK-alg(R,K[ε]) ∼= DerK(R,K) = HomK(mR/m2

R,K). By the universality of
(R,ρ), we have

HomK-alg(R,K[ε]) ∼=
{ρ : Gal(Q/F ) → GL2(K[ε])|ρ satisfies the condtions (K1–4)}

∼=
.

Pick ρ as above. Write ρ(σ) = ρ0(σ)+ρ1(σ)ε. Then cρ = ρ1ρ
−1
F can be easily checked

to be a 1-cocycle having values in M2(K) ⊃ V . Since det(ρ) = det(ρF ) ⇒ Tr(cρ) = 0,
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cρ has values in V . By the reducibility condition (K2), [cρ] ∈ Sel−F (V ). We see easily
that ρ ∼= ρ′ ⇔ [cρ] = [cρ′]. We can reverse the above argument starting a cocycle c
giving an element of Sel−F (V ) to construct a deformation ρc with values in K[ε]. Thus
we have

{ρ : Gal(Q/F ) → GL2(K[ε])|ρ satisfies the condtions (K1–4)}
∼=

∼= Sel−F (V ).

Since the algebra structure of R over W [[Xp]]p|p is given by δpα
−1
p , the K-derivation

δ : R → K corresponding to a K[ε]-deformation ρ is a W [[Xp]]-derivation if and only
if ρ1|Gal(F p/Fp) ∼ ( ∗ ∗

0 0 ), which is equivalent to [cρ] ∈ SelF (V ), because we already knew

that Tr(cρ) = 0. Thus we have SelF (V ) ∼= DerW [[Xp]](R,K) = 0. �

We also have

Lemma 1.4.

(V) SelF (V ) = 0 ⇒ H1(G, V ) ∼=
∏

p

H1(Fp, V )

Lp(V )
.

Indeed, by the Poitou-Tate exact sequence, the following sequence is exact:

SelF (V ) → H1(GM , V ) →
∏

p

H1(Fp, V )

Lp(V )
→ SelF (V ∗(1))∗.

It is an old theorem of Greenberg that dimSelF (V ) = dimSelF (V ∗(1))∗ (see [G]
Proposition 2); so, we have the assertion (V). �

2. Greenberg’s L–invariant

Here is Greenberg’s definition of L(V ): The long exact sequence of F−
p V/F+

p V ↪→
V/F+

p V � V/F−
p V gives a homomorphism, noting Fp = Qp,

H1(Fp,F−
p V/F+

p V ) = Hom(Gab
Qp

,F−
p V/F+

p V )
ιp−→ H1(Fp, V )/Lp(V ).

Note that
Hom(Gab

Qp
,F−

p V/F+
p V ) ∼= (F−

p V/F+
p V )2 ∼= K2

canonically by φ 7→ (φ([γ,Fp])
logp(γ)

, φ([p, Fp])). Here [x, Fp] = [x, Qp] is the local Artin

symbol (suitably normalized). Since

Lp(F−
p V/F+

p V ) = Ker(H1(Fp,F−
p V/F+

p V )
Res−−→ H1(Ip,F−

p V/F+
p V )),

the image of ιp is isomorphic to F−
p V/F+

p V ∼= K. By (V), we have a unique subspace

H of H1(G, V ) projecting down onto

∏

p

Im(ιp) ↪→
∏

p

H1(Fp, V )

Lp(V )
.
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Then by the restriction, H gives rise to a subspace L of
∏

p

Hom(Gab
Fp

,F−
p V/F+

p V ) ∼=
∏

p

(F−
p V/F+

p V )2

isomorphic to
∏

p(F−
p V/F+

p V ). If a cocycle c representing an element in H is unrami-
fied, it gives rise to an element in SelF (V ). By the vanishing of SelF (V ) (Lemma 1.3),
this implies c = 0; so, the projection of L to the first factor

∏
p(F−

p V/F+
p V ) (via

φ 7→ (φ([γ, Fp])/ logp(γ))p) is surjective. Thus this subspace L is a graph of a K–linear
map L :

∏
p F−

p V/F+
p V →

∏
p F−

p V/F+
p V . We then define L(V ) = det(L) ∈ K.

Let ρ : GF → GL2(R) be the universal nearly ordinary deformation with ρ
∣∣
D

=(
∗ ∗
0 δ

)
. Then cp = ∂ρ

∂Xp
|X=0ρ

−1
F is a 1-cocycle (by the argument proving Lemma 1.3)

giving rise to a class of H. By Lemma 1.3, H = Sel−F (V ), and {cp}p gives a basis of H
over K. We have δ([u, Fp]) = (1 + Xp)

logp(u)/ logp(γ) for u ∈ O×
p = Z×

p . Writing

cp(σ) =

(
−ap(σ) ∗

0 ap(σ)

)
ρF (σ)−1,

we have ap = δ−1 dδ
dXp

|X=0, and from this we get the desired formula of L(Ad(ρF )).

If one restricts c ∈ H to G∞ = Gal(F (p)/F∞), its ramification is exhausted by
Γ = Gal(F∞/F ) (because Fp = Qp) giving rise to a class [c] ∈ SelF∞(V ). The kernel
of the restriction map: H1(G, V ) → H1(G∞, V ) is given by H1(Γ,H0(G∞, V )) = 0
because H0(G∞, V ) = 0. Thus the image of H in SelF∞(V/T ) gives rise to the order
d exceptional zero of Larith(s,Ad(ρF )) at s = 1. We have proved

Proposition 2.1. For the number of prime factors d = [F : Q] of p in F , we have

ords=1 Larith
p (s,Ad(ρF )) ≥ d.
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