GALOIS DEFORMATION AND L-INVARIANT

HARUZO HIDA

1. LECTURE 2

Let p > 2 be a prime, and fix a totally real finite extension F//Q. For simplicity,
we assume that p splits completely in F//Q. We start with a Galois representation
pr : Gal(Q/F) — GLy(W) associated to a discrete series Hilbert modular form
f (over F) with coefficients in a finite extension W/Z, (a DVR). We assume the
ordinarity of pp:

€p * : -
prl|p, = (Op ap) with €, # ap, eplr, =N and a,(l,) =1

on the decomposition group and the inertial group I, C D, C Gal(Q/F) for all
prime factor p of p in F. Here N(0) € Z5 is the p-adic cyclotomic character with
exp(%)” = exp(%) for all n > 0 and k£ > 1 is an integer. Again for simplicity,
we assume that p is unramified outside p. Thus for any prime [ { p, writing f|7'(l) =
arf, we have Tr(p(Frob)) = ar € W. Let K be the quotient field of W (so, K/Q, is
a finite extension).

We consider the universal nearly ordinary deformation p : Gal(Q/F) — GLy(R)
over K with the pro-Artinian local universal K-algebra R. This means that for any
Artinian local K-algebra A with maximal ideal m4 and any Galois representation
pa: Gal(Q/F) — GLy(A) such that

(K1) unramified outside p;

(K2) palca,/r) = (0, ) with aap = o mod my;

(K3) det(pa) = det pp;

(K4) pa = pr mod my,

there exists a unique K-algebra homomorphism ¢ : R — A such that p o p = pa.
Note that N : Gal(Fy[pp]/F,) = Z) (by splitting of p in F//Q). Let T'y = 1+ pZ, C
Gal(Fy[pp=]/Fy). Choose a generator 7, of I', and identify W[[I'y]] with W[[X,]] by
Yo < 1+Xp. Since plgag,/r) = (06, ), Opa; " 1 Ty — R induces an algebra structure
on R over W[[X,]]. Thus R is an algebra over K[[X;]]y,. If we write ¢ : R — K for
the morphism with ¢ o p = pp, by our construction, Ker(¢) 2 (Xp)p|p-
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Here is the theorem we have seen in the first lecture:

Theorem 1.1. Suppose R = K[| Xy]lyp. Then, if p o p = pp, for the local Artin
symbol [p, Fy| = Frob,, we have

£(Ind2 Ad(pr)) = L(Ad(pr)) = det (%ﬁ”)
P,y

T es, (w)an(le. 7))
p
Greenberg proposed a conjectural formula of the L-invariant for a general p-adic
p-ordinary Galois representation V' with an exceptional zero. When V = Ad(pr),
his definition goes as follows. Under some hypothesis, he found a unique subspace
H c H'(F, Ad(pr)) of dimension e = |{p|p}| represented by cocycles c : Gal(Q/F) —
Ad(pr) such that
(1) ¢ is unramified outside p;
(2) c restricted to D, is upper triangular after conjugation for all p|p.
By the condition (2), c|;, modulo upper nilpotent matrices factors through the cyclo-
tomic Galois group Gal(Qy|pp~]/Q,) because F, = Q,, and hence ¢|p, modulo upper
nilpotent matrices becomes unramified everywhere over the cyclotomic Z,-extension
F./F. In other words, the cohomology class [¢] is in Selg_(Ad(pr)) but not in

Selr(Ad(pr)).
Take a basis {cp}), of H over K. Write

~ —ay(0) * : /
cp(0) ( 0 ap(a)) for 0 € Dy with any p’|p.

Then a, : Dy — K is a homomorphism. His L-invariant is defined by

L(Ad(pr)) = det ((%([P> F)) pprtp (102, (7)) " ap([ Fp’]))p,p’lp)_l) '

The above value is independent of the choice of the basis {¢,},. Then assuming the
following two conditions:
(1) = (pr mod myy) is absolutely irreducible over Gal(Q/F[u,));
(ds) p** has a non-scalar value over Gal(F,/F,) for all prime factors p|p,
by using a result of Taylor-Wiles and Fujiwara (see Fujiwara’s paper: arXiv.math.NT /0602606),
we can prove R = K[[X,]], and the following conjecture for the arithmetic L-function
is a theorem except for the nonvanishing £(Ad(pr)) # 0 (see [HO0] Theorem 6.3 (4)):

Conjecture 1.2 (Greenberg). Suppose ((ds) and that p is absolutely irreducible. For
Larith(s, Ad(pp)) = @ (y* — 1), then Ly (s, Ad(pr)) has zero of order equal to
d = [F : Q] and for the constant L(Ad(pr)) € K* specified by the determinant as in
the theorem, we have
Ly (s, Ad(pr))
lim
s—1 (s —1)4

up to units.

= L(Ad(pr))E* (Ad(pr))|[Selo(Ind} Ad(pp)*)]|[ /1%
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In the following section, we describe the Selmer group and how to define H.

1.1. Selmer Groups. We recall Greenberg’s definition of Selmer groups. Write
F® /F for the maximal extension unramified outside p and co. Put & = Gal(F®/F)
and &, = Gal(F® /M). Let V = Ad(pr) with a continuous action of &. We fix a
W-lattice T in V stable under &.

Write D = D, C & for the decomposition group of each prime factor p|p. Choosing
a basis of pr so that pr|p is upper triangular. We have a 3-step filtration:

(ord) VD F, VD FTV {0},

where taking a basis so that pp[p is upper triangular, 'V is made up of up-
per triangular matrices and .7-"; V' is made up of upper nilpotent matrices, and on
FoVIFSV, D acts trivially (getting eigenvalue 1 for Frob,). Since V' is self-dual, its
dual V*(1) = Homg (V, K) ® N again satisfies (ord).

Let M/F be a subfield of F®) and put &, = Gal(F® /M). We write p for a
prime of M over p and q for general primes of M. We put

v
Ly(V) = Ker(Res : H'(M,,V) — H' (I, ——)).
” ” i
Then for a &y-stable W-lattice T of V', we define for the image L,(V/T) of L,(V)
in H'(M,, V/T)
HY(M,, A)
1.1 Sely(A) = Ker(H (&, A) — || ——2-

The classical Selmer group of V' is given by Sely,(V/T'), equipped with discrete topol-
ogy. Write F, for the cyclotomic Z,-extension of F'. We define “—” Selmer group
replacing Ly(A) by

)) for A=V, V/T.

_ V
L, (V) =Ker(Res: H'(M,,V) — H'(I, m)).
Lemma 1.3. Suppose R = K[[X,|lpp. Then Selp(V) = Homg(mg/m3, K) and
Selp(V) =0.

Proof. We consider the space Derg (R, K) of continuous K-derivations. Let K[e] =
K|t]/(t?) for the dual number ¢ = (¢ mod t?). Then writing K-algebra homomor-
phism ¢ : R — K[e] as ¢(1r) = ¢o(r) + ¢1(r)e and sending ¢ to ¢; € Derg (R, K), we
have Homg a14(R, K[¢]) = Derg (R, K) = Homg (mp/m%, K). By the universality of
(R, p), we have

{p: Gal(Q/F) — GLy(K|[e])|p satisfies the condtions (K1-4)}

~Y

Hompg (R, K[e]) =

Pick p as above. Write p(0) = po(o) + p1(o)e. Then ¢, = p1pz' can be easily checked
to be a 1-cocycle having values in M, (K) D V. Since det(p) = det(pr) = Tr(c,) = 0,
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¢, has values in V. By the reducibility condition (K2), [c,] € Sel, (V). We see easily
that p = p' < [¢,] = [cy]. We can reverse the above argument starting a cocycle ¢
giving an element of Sel (V') to construct a deformation p, with values in K[e]. Thus
we have

{p:Gal(Q/F) — GLy(Kl[e])|p satisfies the condtions (K1-4)}

~Y

= Seln (V).

Since the algebra structure of R over W([[X]]y, is given by d,a;,", the K-derivation
d : R — K corresponding to a K [¢]-deformation p is a W[[X,|]-derivation if and only
if p1lgaF, /5,y ~ (60), which is equivalent to [c,] € Selp(V'), because we already knew
that Tr(c,) = 0. Thus we have Selp(V) & Derwyx,(R, K) = 0. O

We also have

Lemma 1.4.

(V) Selp(V) = 0 = HY(®,V) = H%.

Indeed, by the Poitou-Tate exact sequence, the following sequence is exact:

YF
Selp(V) — HY (G, V H ”’ — Selp(V*(1))".

It is an old theorem of Greenberg that dlm Selp(V) = dimSelp(V*(1))* (see [G]
Proposition 2); so, we have the assertion (V). O
2. GREENBERG’S L-INVARIANT

Here is Greenberg’s definition of £(V'): The long exact sequence of F V/F SV —
V/FFV — V/F7V gives a homomorphism, noting I, = Q,,
H'(Fy, Fy V/FFV) = Hom(&8 , Fy V/FFV) 2 HY(F,, V) /Ly(V).
Note that
Hom(GY, Fy V/FIV) = (F, V/FV)? = K?

canonically by ¢ +— (qﬁlf)[; I(i";] ,o([p, Fy))). Here [z, Fy] = [2,Q,] is the local Artin

symbol (suitably normalized) Since
Ly(Fy VIFSV) = Ker(H' (Fy, FyV/FSV) = H' Iy, F, VI FSV)),

the image of ¢, is isomorphic to F,- V/]—";V >~ K. By (V), we have a unique subspace
H of H'(®,V) projecting down onto

LT )
[T I

Res
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Then by the restriction, H gives rise to a subspace L of
[[Hom(Gs, 7y v/ FV) = [[(Fp VIFSV)?
p p

isomorphic to [, (F, V/F V). If a cocycle ¢ representing an element in H is unrami-
fied, it gives rise to an element in Selx(V'). By the vanishing of Selz(V') (Lemma 1.3),
this implies ¢ = 0; so, the projection of L to the first factor Hp(fp_V/f;V) (via
¢+ (o([, Fy])/1og,(7))p) is surjective. Thus this subspace L is a graph of a K-linear
map L : [[, o V/FSV =TI, F, V/FSV. We then define L(V') = det(£) € K.

Let p : & — GLy(R) be the universal nearly ordinary deformation with p‘ b=

(; :;) Then ¢, = ;mezopgl is a 1-cocycle (by the argument proving Lemma 1.3)

giving rise to a class of H. By Lemma 1.3, H = Sel(V), and {c¢,}, gives a basis of H
over K. We have &([u, F]) = (1 + X,)'8 /108,00 for 4 € O, = Z, . Writing

—ap(o * _
)= (T8 i) e
we have a, = 5_1%&:0, and from this we get the desired formula of L(Ad(pr)).

If one restricts ¢ € H to &, = Gal(F®)/F,), its ramification is exhausted by
I' = Gal(F/F) (because F, = Q,) giving rise to a class [c] € Selp_(V). The kernel
of the restriction map: H'(&,V) — H' (G, V) is given by HY(T', H*(6,V)) = 0
because H(B,,V) = 0. Thus the image of H in Selg,_(V/T) gives rise to the order
d exceptional zero of L (s, Ad(pr)) at s = 1. We have proved

Proposition 2.1. For the number of prime factors d = [F : Q] of p in F, we have
ord,—; L;mh(s, Ad(pr)) > d.
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