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1. Introduction

As before, let p be an odd prime, N an integer prime to p. Let S be the set of
primes dividing N, together with p and co. Recall that Gq g is the Galois group
of the maximal extension of Q unramified outside S. Consider a representation:

p: GQ7S — GLQ(FP)

which we assume to be absolutely irreducible (called a residual representation in
what follows). One is interested in parametrising the representations

p:Gqs — Gla(Zy)
such that the reduction of p mod p is equivalent to p. Such representations are
called deformations of p (in what follows, an over-bar means reduction mod p).
This question is closely connected with that of congruence between modular
forms. Indeed, let f € Si(To(Np"),Z,) be a cuspidal eigenform (here k& > 2,r > 1).
Work of Shimura, Deligne, shows that one can associate to f a Galois representa-
tion:

pr: Gaq,s — GL2(Zy)
such that

tr(ps(Froby)) = a(l, f), det(ps(Froby)) =1*~1, for I fNp.

(From now on take the residual representation to be py (assumed to be absolutely
irreducible). Then for any eigenform g € S(To(Np"),Z,) such that g = f, we
would have p, equivalent to p¢, by the Cebotarev density and the Brauer-Nesbitt
theorem. In other words, for any such g the representation p, is a deformation of
Py

This deformation problem has the same formulation as that occurs in algebraic
geometry. Using Schlessinger’s criterion, Mazur [3] showed that there is an universal
deformation; namely there exists a complete noetherian local Z, algebra R(p5), a
representation:

Puniv * GQ,S . GLQ(R(ﬁ))
with the property that for any representation p as above, there exists a unique Z,
algebra homomorphism ¢, : R(p) — Z,, such that p is equivalent to ¢, © puniv. In
other words, Spec(R(p) served as a parameter space for the deformations of p.
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R(p) is “big”. In fact, one can show [3] that the Krull dimension of R(p)/pR(p)
is > 3. If p comes from the p-torsion of an elliptic curve over Q, then using a
theorem of Flach [1], one can show in a lot of cases that R(p) is isomorphic to a
formal power series ring Z,[[T4, T2, T3]].

Furthermore, one can restrict the set of deformations allowed. For instance,
recall that a representation:

p:Gq,s — GL2(A4), A being Z,-algebra

is said to be ordinary at p, if when restricted to the decomposition group at p, the
representation can be put into a upper triangular form, with the rank one quotient
being unramified (at p). It’s an important theorem that, if f is p-ordinary, then
ps, and hence py is ordinary at p. In this case, one can restrict to deformations of
py which are ordinary at p. Such ordinary deformations can be parametrised by

universal ordinary deformation ring R(p)°, which is a quotient of R(f):
R(p) — R(p)°
(geometrically, a closed locus of Spec(R(p)) such that, the representation:
p?lniv : GQ;S - GLQ(R(ﬁ)O)

obtained by composing puniy with the above homomorphism, is ordinary at p, and
has the required universal property.

Galois representations with “big” coefficient rings were historically first con-
structed in conjunction with Hida’s theory. Indeed suppose that f is p-ordinary,
and to avoid technical details, suppose N = 1. Recall the ordinary component of
the p-adic Hecke algebra:

mord — hird(I‘l(poo), Z,) = Hin thd(Fl(pr), Z,)

Then a p-ordinary eigenform g as above corresponds to an algebra homomorphism
@ : T — Z,. In other words, Spec(T™®) served as a universal parameter space
that interpolates p-ordinary eigenform.

For our purpose, it suffices to study the local structure of Spec(T°) around
the closed point of characteristic p corresponding to the residual eigenform f: it
corresponds to ¢y (mod p):

Tord N Zp N Fp
Let m be the kernel. Then m gives a closed point of Spec(T°™?). Let T be the
completion of T4 at m. Then Spec(T9') can be interpreted as a local deformation
space, which parametrises p-ordinary eigenform g, such that g = f.
Hida [2], and later Mazur-Wiles [5], showed that the association:

g = pPyg
can be interpolated; they constructed a Galois representation
Pt 1 Gq,s — GLa(TY)

such that if g is an p-ordinary eigenform such that § = f as above, then p, is
equivalent to ¢4 o pord.

Moreover, Mazur and Wiles have shown that, the representation p'¢ is ordinary
at p in the sense above. Thus, Spec(T%4) can also be regarded as the universal

ordinary modular deformation space for the residual representation py.



Now from the universal property of the deformation ring R(p)?, there exists an

algebra homomorphism:
R(p)° — Tt
such that po'd is equivalent to the composition of p2,; with this homomorphism.

It’s not difficult to show that this is surjective. Furthermore, Gouvéa and
Mazur have conjectured that it is an isomorphism (in the general case where N # 1
the conjecture needs to be modified somewhat). This would be a precise way of
saying that all the deformations of the residual representation p, which is assumed
to be modular, are also modular.

A variant of this conjectured isomorphism figured prominently in the work of
Wiles, Taylor-Wiles on the Shimura-Taniyama conjecture. In turn, their methods
and results can be used to show, in many cases, that the above conjecture of Gouvéa
and Mazur is true. In fact, generalisation to rank 2 Siegel modular form, still in
the ordinary case, has already been considered, c.f. Tilouine’s lectures.

For a discussion of the non-ordinary setting, see [4].
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