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1 Introduction

The goal of evolutionary game theory is to explain behavior in strategic set-
tings – typically biological or economic – from the perspective of Darwinian
evolution. An evolutionary system involves three basic elements: a strate-
gic game, a population of players, and some mathematical conception of the
evolution of strategic game-play throughout the population. Traditional eco-
nomic game theory is easily adapted to a population of players; evolutionary
game theory, then, imposes on this population some form of mathematical
dynamics.

This thesis is motivated by a specific topic in evolutionary game theory:
the coevolution of cooperation and costly punishment. This is a recent vari-
ation on a classic conundrum of economic game theory, namely the famous
“Prisoner’s Dilemma,” and the evolution of cooperation. The aim of this
thesis is to introduce the major results of evolutionary game theory for in-
finite populations, and to apply these results to a new problem stemming
from recent evolutionary models of cooperation and punishment.

1.1 The Prisoner’s Dilemma

The Prisoner’s Dilemma is perhaps the most well-known problem in game
theory. This famous moniker comes from the backstory of two apprehended
partners-in-crime, each of whom must decide whether to keep quiet (cooper-
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ate,“C”) or confess (defect, “D”). Two cooperating criminals get away with
just a small fine, while two defectors both serve short prison sentences; but if
just one of the two defects, the defector gets off “scot-free,” while the cooper-
ator is sentenced to many years in prison. Put into the language of economic
game theory, the Prisoner’s Dilemma is a two-player game specified by the
following payoff matrix :1

( C D

C b− c −c
D b 0

)
with b > c > 0. (1.1)

Intuitively, a selfish rational player should defect, since this always gives a
higher payoff than cooperating, regardless of the opponent’s strategy. The
game-theoretic concept of Nash equilibrium (discussed in §2.1) formalizes this
intuition, and in general indicates the possible strategic outcomes of games
played by rational individuals who have perfect knowledge of each other’s
rationality. Thus, economic game theorists have long been fascinated by the
implications of the Prisoner’s Dilemma – why does cooperation arise among
individuals, groups, and societies, despite the fact that defection is optimal
for selfish rational individuals?

A popular economic explanation is that cooperation is self-reinforced by the
possibility for reciprocation, either through repeated game-play (Fudenberg
and Maskin, 1990; Trivers, 1971) or the development of social reputations
(Levine and Pesendorfer, 2007; Sigmund et al., 2001). Another explanation
is the mechanism of costly punishment, whereby cooperators can pay a cost
to punish defectors (for references, see §5). The mechanism of costly pun-
ishment as a means of stabilizing cooperation has drawn much attention in
recent years, and serves as the motivation behind the evolutionary theory
developed in this paper.

1.2 Evolution in Games

Evolutionary game theory offers us a different perspective from traditional
economic game theory. Evolution, too, is a selfish process, but unlike eco-
nomics it presupposes no degree of rationality, nor any form of conscious

1A player employing a row-i strategy against a column-j opponent receives a payoff
equal to matrix element (i, j).
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decision-making for that matter. This is not to say that evolutionary game
theory obsoletes classical game theory. Evolution takes root in the payoffs of
the underlying game, and thus builds upon, rather than replaces, the results
of classical game theory.

Darwinian evolution presumes that members of a population are endowed
with heritable genes that determine physical and behavioral traits. Traits
determine varying levels of individual fitness, and natural selection favors
the reproduction of the fit. Random mutations create genetic diversity in
a population, which natural selection then narrows, so that the most suc-
cessful traits prevail over time. The Darwinian mechanisms of selection and
mutation make sense in a game-theoretic context whenever strategic behav-
ior is thought to be inherent or immutable, for instance if we believe that
a prisoner’s likelihood to cooperate or defect is determined by some fixed
personality traits or moral values.

Thus, evolutionary game theory assumes that individuals’ strategies are in
some way fixed, programmed, or otherwise rooted in heritable traits. Typi-
cally, a two-player game is played throughout the population in some manner
– often in random pairs or in small groups – and thus the payoff to playing
a given strategy is determined by the probability of facing each possible op-
posing strategy, i.e. the proportion of the population playing each strategy.
The fitness of a strategy is defined as a function of its payoff (typically some
simple monotonic map), and is thus also dependent on the strategic state of
the population.

The selection mechanism of evolution can be formulated in many ways. One
common mathematical setting for evolutionary theory is a continuous-time
dynamical system acting on a “continuum population,” or an infinite popula-
tion normalized to a unit mass. A selection mechanism is incorporated in the
updating rule of the dynamical system. This selection can be thought of in a
biological setting as the traditional Darwinian notion of reproduction/death
of the fit/unfit, or in an economic setting as the growth/contraction of wealth
or influence for the strategically successful/unsuccessful. Here we prefer a
third interpretation, which better suits the social setting of human coopera-
tion games: selection acts through strategic imitation of the fit by the unfit.
Mutation is indirectly incorporated into infinite-population dynamics via the
possibility of small perturbations in the strategic composition of the popu-
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lation. Mutation is also addressed by the static notion of an evolutionary
stable strategy, due to Maynard Smith and Price (1973), which in some sense
refines the Nash equilibrium of economic game theory.

There are many alternative approaches to evolutionary modeling, includ-
ing discrete-time difference equations (Nowak, 2006; Fudenberg and Levine,
1998), finite-population stochastic models (Traulsen and Hauert, 2008; Traulsen
et al., 2008, 2007), as well as spatial models that structure finite populations
using lattices, graphs, or sets (Nakamaru and Iwasa, 2006; Nowak, 2006;
Nakamaru and Iwasa, 2005). In the scope of our study we will only deal with
continuous-time infinite-population dynamics, but the compelled reader is
encouraged to investigate alternative models, as evolutionary game theory is
a deep and, so to speak, ever-evolving field of study.

1.3 Note to the Reader

We here discuss our reliance on specific elements of economic game theory,
and briefly outline the evolutionary material to follow.

The bulk of game theory is formulated for normal-form (or strategic-form)
games, namely those games with a finite set of players, a set of strategies
for each player, and a well-defined function2 that assigns to each player a
payoff based on the strategic action of all players. Evolutionary game the-
orists almost always restrict their analysis to normal-form games, so that
they may focus on the dynamics of evolution rather than the eccentricities
of non-normal games.

Furthermore, it often makes sense to assume symmetry in an evolutionary
context: a population that is homogeneous, in the sense that all individ-
uals have the same choice of strategies and contingent payoffs, is consis-
tent with a symmetric underlying game. Evolutionary theory for asymmet-
ric games, such as bimatrix games3 and multipopulation models4 are well-
studied, but here we are solely concerned with symmetric games like the
Prisoner’s Dilemma. Also, as mentioned in the previous section, it is com-

2This payoff function is typically required to be a viable von Neumann-Morgenstern
utility function; see Osborne and Rubinstein (2002) for further description.

3See Hofbauer and Sigmund (1998), Ch. 10-11.
4See Weibull (1995), Ch. 5.
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mon to analyze two-player games, which can then be played throughout a
population in various ways (Hofbauer and Sigmund, 1998; Fudenberg and
Levine, 1998; Weibull, 1995).

Thus, we begin in §2.1 by establishing the language and notation of game
theory for two-player symmetric games. We center our discussion on the
Nash equilibrium, which remains a key notion in evolutionary game theory,
and prove the existence theorem for Nash equilibria.5 A reader well-versed
in game theory may wish to skim this section. §2.2 introduces a static re-
finement of the Nash equilibrium known as the evolutionary stable strategy,
and proves some results that will be used throughout the paper.

§3.1 and §3.2 introduce the formalism of game dynamics, solution mappings,
and equilibria in dynamical systems, some of which will be rote for the reader
familiar with the theory of differential equations. §3.3 is the crux of our in-
vestigation of the link between static and dynamic equilibria, and we here
prove two major theorems of evolutionary game theory.

§4 introduces the two specific evolutionary models that we will use to analyze
the game of cooperation and punishment in §5. §4.4.3 also presents a use-
ful form of evolutionary equilibrium analysis different from the more formal
methods described in §3.1.

§5 is the central application of the theory in §2-4. We here study the statics
and dynamics of a game of cooperation and costly punishment that builds
upon the Prisoner’s Dilemma. This analysis is the original work of David
G. Rand, Mayuko Nakamaru, Hisashi Ohtsuki, and myself, under the super-
vision of Martin Nowak and his Program for Evolutionary Dynamics. Our
analysis is of interest in response to recent results, which have supported the
stable evolution of cooperation when there is a strategic option to punish
defectors. Using the tools of static game theory as well as the dynamics of
two different evolutionary models, we show that when defectors are also al-
lowed to “antisocially” punish cooperators, cooperation is no longer favored
by evolution.

5For a more rigorous introduction to general game theory, including the Nash existence
proof for general finite games, see Appendix A.
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2 Static Game Analysis

There are certain evolutionary traits intrinsic to a game which we can analyze
before imposing any dynamical mathematical structure. The identification of
static equilibria – namely, Nash equilibria and evolutionary stable strategies
– offers insight into the nature of a game, and establishes a benchmark for
comparison with evolutionary analysis.

2.1 Symmetric Game Theory and Nash Equilibria

In a normal-form game between m players, each player i is associated with
a pure strategy space Si and a payoff function πi : ×mi=1Si → R, where the
product space ×mi=1Si contains all possible combinations of players’ strate-
gies. Thus a game is fully specified by the triple G = (m, {Si}, {πi}).

In a symmetric game, all m players share a pure strategy space S, and
each player’s payoff function πi must be invariant under any permutation
δ of players and players’ strategies: πi(s1, . . . , sm) = πδ(i)(sδ(1), . . . , sδ(m)). In
other words, all payoffs depend only on which strategies are played – indepen-
dent of which opponent plays each strategy – allowing us to ignore subscripts
on symmetric payoff functions.

Supposing there are two players and a finite strategy space,6 say |S| = n, the
payoff function π is given by a real n×n payoff matrix A, where π(si, sj) = aij,
as in the Prisoner’s Dilemma (1.1). A two-player symmetric game is then
denoted G = (2,S, A).

In game G, a player can also employ a mixed strategy by playing each pure
strategy si ∈ S with fixed probability. This creates a mixed-strategy space,
or the space of all probability weightings x1, . . . , xn across n pure strategies.
This mixed-strategy space is then isomorphic to the simplex Sn ⊂ Rn of
dimension (n− 1):

Sn = {x ∈ Rn |
n∑
i=1

xi = 1, xi ≥ 0 ∀i}. (2.1)

6The existence of Nash equilibria is only guaranteed for games with finite strategy
spaces, so this assumption will suffice for our purposes.
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Henceforth we will treat this equivalence not as an isomorphism, but as a
definition: mixed strategies are column-vectors in the simplex Sn, whose
vertices are the pure strategies S = {e1, . . . , en}, the standard basis vectors
of Rn. Let us define, for each strategy x, the subset of the simplex consisting
of the vertices which span x.

Definition. The support of a strategy x ∈ Sn is the set of pure strategies to
which x assigns nonzero probability weights:

S(x) = {ei ∈ Sn | xi > 0}. (2.2)

The support of a strategy is a fundamental notion with frequent applications
throughout game theory.

The expected payoff of an x-strategist playing against a y-strategist is given
by the probabilistic sum of payoffs over all pure strategies:

n∑
i=1

n∑
j=1

Pr(si)Pr(sj)π(si, sj) =
∑
i,j

xiyjaij = x · Ay (2.3)

where (·) denotes the standard inner product on Rn. Note that (2.3) is
consistent with our initial definition of pure-strategy payoffs, since playing
strategy ei against ej gives payoff ei · Aej = aij.

It is important that the payoff function is a bilinear form on Rn, i.e. that it
is linear in each player’s mixed strategy.7 We will use this fact in our analysis
of the properties of Nash equilibria, as well as in the Nash existence proof.
We now introduce the best-reply function, which lays the foundation for the
Nash equilibrium.

Definition. Given an opponent’s strategy y ∈ Sn, a player’s best-reply is
given by

β(y) = {x ∈ Sn | x · Ay ≥ ei · Ay, ∀ei ∈ S}. (2.4)

Note that this definition permits multiple best-replies to a given strategy.
Thus a player’s best reply β is not a proper function, but rather a correspon-
dence on Sn, or equivalently a set-valued function β : Sn → P(Sn).8

7It is, in fact, always the case in any normal-form game that payoffs are multilinear in
the players’ mixed strategies; see (A.1) in Appendix A.

8Where P(A) denotes the set of all subsets of A.
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A best reply is thus a strategy which maximizes a player’s payoff, taking the
opponent’s strategy as a given. A Nash equilibrium occurs when each player’s
strategy is a best reply to his opponent’s strategy: (x,y) ∈ β(y) × β(x) ⊂
S2
n. In other words, a Nash equilibrium is a set of strategies from which no

player can profitably deviate. In an evolutionary context, we are particularly
interested in those symmetric Nash equilibria (x,x), in which each player
employs the same equilibrium strategy. A symmetric Nash equilibrium can
be represented by a single strategy, and thus corresponds to a single point
in the simplex, which will translate nicely into a population state when we
introduce evolutionary dynamics in §3. We now formalize this discussion:

Definition. A strategy x ∈ Sn is a symmetric Nash equilibrium if x ∈ β(x),
i.e. if

x · Ax ≥ ei · Ax ∀i ∈ {1, ..., n}. (2.5)

We say that the Nash equilibrium is strict if {x} = β(x) (i.e. if the above
inequality holds strictly).

Note that the Nash equilibrium quite elegantly requires that each player
check only for profitable pure-strategy deviations, because the payoff y · Ax
to a mixed-strategy y is linear in the probability yi assigned to each pure
strategy. As another consequence of this linearity, a mixed-strategy Nash
equilibrium x must be indifferent among the pure strategies in its support
S(x) (otherwise, a profitable deviation is achieved by decreasing the probabil-
ity weight of an inferior support strategy). It follows that a mixed strategist
in Nash equilibrium can always deviate to any probabilistic combination of
his support strategies without altering his payoff, and thus a mixed strategy
cannot be a strict Nash equilibrium (Fudenberg and Levine, 1998; Fudenberg
and Tirole, 1991).

As mentioned in the introduction, Nash equilibria tell us which stable out-
comes we can expect in a game played by perfectly rational agents with
perfect knowledge of each other’s rationality. Even if perfect rationality is
too much to ask of real-world game participants, it is nonetheless valuable
to be able to identify these “ideal” equilibria in a game.

Example 2.1. Recall the Prisoner’s Dilemma game (1.1) from the intro-
duction, where we discussed the fact that defection is the only strategy that
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can arise in rational game-play. We can now justify this logic formally, by
observing that defection (D) is the unique Nash equilibrium of the game.
Furthermore, D is a strict Nash equilibrium, since 0 > −b. �

Example 2.2. We now introduce to the Prisoner’s Dilemma a second round
of game-play, in which a player can choose to incur a cost α > 0 in order to
punish a defector by an amount β > 0. Adding a player’s payoffs from the
two rounds gives the overall payoff matrix

( CP DN

CP b− c −c− α
DN b− β 0

)
where “CP” denotes a cooperator who punishes defectors, and “DN” a de-
fector who does not punish other defectors. While DN is still a strict Nash
equilibrium (since 0 > −c − α), we see that CP is also strict Nash if pun-
ishment is sufficiently effective, i.e. if β > c (and weak Nash if β = c).
Thus, cooperation can become a rational strategy when there is the chance
of punishment. We can also calculate any potential mixed-strategy Nash
equilibrium: supposing a Nash strategist plays CP with probability x (hence
DN with probability 1−x), we use the Nash condition of indifference among
support strategies to compute,

x(b− c) + (1− x)(−c− α) = x(b− β)

=⇒ x =
α + c

α + β

which is between 0 and 1 as long as β > c. In other words, a mixed Nash

equilibrium
(
α+c
α+β

, 1− α+c
α+β

)
exists as long as CP itself is Nash. �

Defection in the traditional Prisoner’s Dilemma of Example 2.1 is in some
sense the purest form of strict Nash equilibrium, since cooperation is “strictly
dominated,” i.e. never a best reply to an opponent’s strategy. The notion of
strategic dominance is useful in both static and evolutionary game theory,
and thus we briefly introduce dominance relations before proceeding to the
existence theorem for Nash equilibria.9

9As a prelude to the evolutionary results of §3.3, we need only introduce strict strate-
gic dominance, although weak dominance is also an important concept in classical game
theory. See Fudenberg and Tirole (1991) for a thorough treatment of strategic dominance.
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Definition. A strategy x ∈ Sn is dominated if there exists some x′ ∈ Sn
such that

x′ · Ay ≥ x · Ay ∀y ∈ Sn. (2.6)

We say that x is strictly dominated if the above inequality holds strictly;
otherwise, x is weakly dominated.

This definition leads to a process of narrowing a player’s rational strategy
space by iteratively “deleting” strictly dominated pure strategies (we will see
shortly why weakly dominated strategies are not eliminated). For instance,
beginning with a game G = (2, S, A), a player first rules out all strictly dom-
inated strategies to obtain a rational subgame G1 = (2,S1, A1). Then it is
possible that there are strategies in G1, undominated in the original game
G, which are now strictly dominated in G1 by way of the removal of certain
strategies from G. This leads to a twice-trimmed game G2, and so on, un-
til GT+1 = GT for some T (which occurs when no remaining strategies are
strictly dominated). The strategies ST of this final subgame are the pure
strategies which are not iteratively strictly dominated in the game G.

Note that any pure-strategy Nash equilibrium is undominated, hence con-
tained in the set ST . Moreover, a Nash strategy cannot contain any strictly
dominated strategy in its support – by the linearity of the payoff function, it
is profitable for a mixed-strategist to transfer probability weight from a dom-
inated strategy to one of its dominators. Thus, we have proven the following
result:

Proposition 2.1. No strategy in the support of a symmetric Nash equilib-
rium is iteratively strictly dominated.

Proposition 2.1 allows us to search for Nash equilibria after reducing the game
G to its final trimmed subgame GT , without losing any potential equilibria.
This result does not extend to weak domination: a weak Nash equilibrium
can contain in its support (or can itself be) a weakly dominated strategy.10

The evolutionary equilibrium we introduce in §2.2 is a refinement of the Nash
equilibrium, and cannot contain any weakly dominated strategies in its sup-
port.

10We will see an example of this, as well as of strictly dominated strategies, in our
analysis in §5.
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We are now ready to prove existence of symmetric Nash equilibrium in sym-
metric games.11 The proof hinges on the Kakutani Fixed Point Theorem, a
generalization of the Brouwer Fixed Point Theorem of topology.12

Theorem (Kakutani Fixed Point Theorem). Let S be a nonempty, convex,
and compact subset of a Euclidean space, and β : S → P(S) a set-valued
function. If β has convex nonempty images and a closed graph,13 then it has
a fixed point x ∈ β(x).

Theorem (Existence of Symmetric Nash Equilibria). Every finite symmetric
two-player game has a symmetric Nash equilibrium.

Proof. By definition (2.5), a fixed point of the best reply map (2.4) is a
symmetric Nash equilibrium of the game. Thus it suffices to show that for a
finite game, β : Sn → P(Sn) satisfies the conditions of Kakutani’s theorem.

(a) The domain of β is a nonempty, convex, and compact subset of a Eu-
clidean space.
It is clear from (2.1) that the simplex Sn is a nonempty, convex, and
compact (closed and bounded) subset of the Euclidean space Rn. Thus
the domain of β meets the requirements.

(b) β(y) is nonempty, ∀y ∈ Sn.
Since a player’s payoff x · Ay is a linear (hence continuous) function
of his strategy x ∈ Sn, it attains a maximum on the compact set Sn.
Namely, there is some x∗ ∈ Sn such that x∗ ·Ay ≥ x ·Ay for all x ∈ Sn.
Thus, by definition (2.4), x∗ ∈ β(y).

(c) β(y) is convex, ∀y ∈ Sn.
For a given y ∈ Sn, let x1, . . . ,xk ∈ β(y) be best replies, i.e. for all
j ∈ {1, . . . , k}, xj achieves the maximal payoff against y: xj · Ay =
λ ≥ x · Ay, ∀x ∈ Sn. Then for any list of nonnegative weights
α1, . . . , αk with unit sum, the corresponding convex combination of
best replies also achieves this maximal payoff, and is thus itself a best
reply: (

∑k
j=1 αjx

j) · Ay =
∑

j αj(x
j · Ay) =

∑
j αjλ = λ.

11See Appendix A for proof of the Nash Existence Theorem for arbitrary finite games,
as in Nash (1951).

12We here state but not prove Kakutani’s theorem; see Kakutani (1941) for proof.
13β has a closed graph if: ({xj}, {yj})→ (x,y), with xj ∈ β(yj)⇒ x ∈ β(y).
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(d) β has a closed graph.
Recall that β has a closed graph if: ({xj}, {yj}) → (x,y), with xj ∈
β(yj) ⇒ x ∈ β(y). We prove this implication by contradiction, using
the following “three-epsilon” argument. Suppose that ({xj}, {yj}) →
(x,y) but x /∈ β(y). Then there exists an ε > 0 and an x′ ∈ Sn such
that x′ · Ay > x · Ay + 3ε. By the continuity of the bilinear payoff
function, and the convergence of ({xj}, {yj}) → (x,y), we also have
for j sufficiently large: x′ ·Ayj > x′ ·Ay− ε, and x ·Ay > xj ·Ayj− ε.
Combining the three inequalities, we get:

x′ · Ayj > x′ · Ay − ε > x · Ay + 2ε > xj · Ayj + ε.

This contradicts the fact that xj ∈ β(yj), and so it must be the case
that β has a closed graph.

Thus, by the Kakutani fixed point theorem, the best-reply mapping of any fi-
nite two-player symmetric game has a fixed point x ∈ β(x), which constitutes
a symmetric Nash equilibrium of the game.

Note that the existence theorem does not guarantee the existence of pure-
strategy equilibria in an arbitrary game (although there are pure-strategy
equilibria in the cooperation games considered in this paper). For instance,
the proverbial “Rock-Paper-Scissors” game has a unique mixed-strategy Nash
equilibrium, but no pure equilibria (Fudenberg and Tirole, 1991).

The beauty of the Nash equilibrium lies in its simple formulation, its uni-
versality, and its ease of computation. There have been many attempts at
modifying the Nash equilibrium, but none have displaced or undermined its
original formulation. That being said, there is certainly room for refinement.
One obvious shortcoming of the Nash equilibrium is that it tells us noth-
ing of how it arises. Evolutionary game theory makes strides in addressing
this question, as well as in addressing the reciprocal question of how systems
evolve away from Nash equilibria – for instance, toward cooperation in the
Prisoner’s Dilemma.

To consider another shortcoming of the Nash equilibrium, recall that only a
pure strategy can be a strict Nash equilibrium. This forces us to turn to the
weak Nash equilibrium as our central notion of mixed equilibrium. However,
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in an evolutionary setting, a population of individuals employing a weak Nash
strategy is vulnerable to invasion by a mutant strategy that earns the same
payoff against the weak Nash strategy as the weak Nash strategy earns from
itself. Then, if the mutant strategy outperforms the Nash strategy against
other mutants, natural selection will favor the mutant strategy and cause it
to take over the population. We now introduce a key form of evolutionary
equilibrium, which permits a mixed strategy to be employed throughout a
stable, uninvadeable population – a powerful compromise between the strict
and weak Nash conditions.

2.2 Evolutionarily Stable Strategies

The notion of evolutionarily stable strategies in game theory was first in-
troduced by Maynard Smith and Price (1973), and soon after formalized
by Maynard Smith (1974). A strategy is said to be evolutionarily stable if,
when a population uniformly adopts the strategy, any small group of deviant
strategists fares worse than the stable strategic majority.

Definition. x ∈ Sn is an evolutionarily stable strategy (ESS) if for every
strategy y ∈ Sn, y 6= x, there exists an invasion barrier ε̄(y) ∈ (0, 1) such
that for all ε ∈ (0, ε̄):

x · A(εy + (1− ε)x) > y · A(εy + (1− ε)x). (2.7)

It is a well-known result (which we will soon prove) that an ESS must in fact
have a uniform invasion barrier, so that the above definition holds for some
minimal ε̄(y) = ε̄ > 0 throughout the simplex. In other words, there is some
nonzero threshold share of the population, below which any proportion of
invaders employing a foreign strategy is repelled.

Using the linearity of A to rearrange (2.7), we get:

(1− ε)(x · Ax− y · Ax) + ε(x · Ay − y · Ay) > 0. (2.8)

For sufficiently small ε, (2.8) holds whenever either the first term is positive,
or the first term is zero and the second term is positive. Thus we have
constructed an equivalent definition of ESS:

Proposition 2.2. A strategy x ∈ Sn is an ESS if and only if the following
two conditions are satisfied.
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(a) Equilibrium Condition:

x · Ax ≥ ei · Ax ∀i ∈ {1, . . . , n}. (2.9)

(b) Stability Condition:

If y 6= x and y · Ax = y · Ax, then x · Ay > y · Ay. (2.10)

As was the case when we defined symmetric Nash equilibria in (2.5), the
definition of ESS by Proposition 2.2 only requires comparison with pure
strategies (again, since the payoff function (2.3) is linear the probabilities a
mixed strategy assigns to the pure strategies). While definition (2.7) is more
directly related to our original conception of the ESS, Proposition 2.2 is of
greater use in computing the ESS’s of a game, as it requires finitely many
comparisons between entries of the payoff matrix A.

Notice that the Equilibrium Condition (2.9) implies that any ESS x is a
Nash equilibrium. Moreover, if a strategy x is strict Nash in the sense of
(2.5), then the inequality in (2.9) holds strictly (making Stability Condition
(2.10) superfluous), so x is an ESS. This gives us Proposition 2.3.

Proposition 2.3. The following chain of implications holds for a strategy
in a symmetric two-player game:

Strict Nash Equilibrium ⇒ ESS ⇒ Nash Equilibrium.

The intuition behind these implications is clear, if we observe that a popula-
tion of strategic composition (1− ε)x + εy is mathematically equivalent to a
mixed strategy which plays x with probability (1−ε) and y with probability
ε – i.e., a slight strategic deviation from x. Then, an ESS can be thought of
as a strategy from which “small” strategic deviations are detrimental; this
is clearly weaker than a strict Nash strategy, from which any deviation is
detrimental. The fact that ESS implies weak Nash is best intuited by con-
trapositive: if a strategy is not weak Nash, then there exists some profitable
strategic alternative, in which case a “small” strategic deviation towards this
profit cannot be detrimental, and thus the strategy is not an ESS.

Recalling the discussion of strategic dominance from §2.1, we observe that the
ESS further distinguishes itself from a Nash equilibrium as a strategy that
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cannot be weakly dominated. Thus, for the ESS we can prove a stronger
version of Proposition 2.1: while a Nash equilibrium cannot have any itera-
tively strictly dominated support strategies, an ESS cannot even possess any
weakly dominated support strategies.

Proposition 2.4. No strategy in the support of an ESS is weakly dominated.

Proof. Let x ∈ Sn be an ESS. Suppose some support strategy ei ∈ S(x)
is weakly dominated (cf. (2.6)), i.e. there exists some x′ ∈ Sn such that
x′ · Ay ≥ ei · Ay, ∀y ∈ Sn. We now construct a strategy that will help
lead us to a contradiction: let z = x − xiei + xix

′, which clearly lies in the
simplex. It follows from this definition that z weakly dominates x, since for
any strategy y,

z · Ay − x · Ay = x · Ay − xi(ei · Ay) + xi(x
′ · Ay)− x · Ay

= xi(x
′ · Ay − ei · Ay) ≥ 0

with the final inequality following from the weak domination of ei by x′.
Letting y = x above, we have z · Ax ≥ x · Ax. Since ESS condition (2.9)
implies x · Ax ≥ z · Ax, we have that in fact x · Ax = z · Ax. Now, ESS
condition (2.10) gives x ·Az > z ·Az. But, letting y = z above, we also have
that z ·Az ≥ x ·Az, which is a contradiction. Thus, our ESS x cannot have
any weakly dominated strategy in its support.

We now introduce another useful property of the support of an ESS.

Proposition 2.5. If x is an ESS and S(y) ⊂ S(x) for some strategy y 6= x,
then y is not a Nash equilibrium.

Proof. If x is an ESS, then it is Nash by Proposition 2.3. Recall from the
discussion in §A that a mixed strategy Nash equilibrium must be indifferent
to all linear combinations of its support strategies. Thus y · Ax = x · Ax.
Then, by the ESS Stability Condition (2.10), x ·Ay > y ·Ay, i.e. y is not a
Nash equilibrium.

Proposition 2.5 offers two interesting corollaries that shed light on the pos-
sible sets of ESS in a game.

Corollary 2.5.1. A finite game has finitely many ESS’s.
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Corollary 2.5.2. If a game has an ESS in the interior of the simplex, then
it is the unique Nash equilibrium (hence ESS) of the game.

Corollary 2.5.1 relies on the fact that there are finitely many support sets
(cf. (2.2)) in a finite game, while Corollary 2.5.2 follows directly from the
original proposition.

A generalization of the global ESS of Corollary 2.5.2 is the notion of local
superiority, which occurs when an ESS dominates some region of neighboring
strategies in the simplex. We will prove that, in fact, local superiority is a
defining property of all ESS’s. But first, we must establish the existence of
uniform invasion barriers (cf. (2.7)) for any ESS in symmetric two-player
games. This result was first established by Vickers and Cannings (1987),
although we also derive elements of our proof here from Weibull (1995) and
Hofbauer and Sigmund (1998).

Theorem 2.1. Every ESS has a uniform nonzero invasion barrier.

Proof. Given an ESS x, we let ε̄(y) denote the least upper bound invasion
barrier for a mutant strategy y, namely, the least upper bound on all initial
proportions of y such that y is eliminated from a population predominated
by x. We seek to prove that ε̄(y) attains a positive minimal value on the
set of all possible mutants. The difficulty of this proof results from the fact
that this set of mutants is not compact, since x can invade itself. Thus, we
must prove that ε̄(y) has a positive minimum on the “punctured simplex,”
S ′n = Sn \ {x}.

We begin by converting the ESS definition (2.7) into a map fx : [0, 1]×Sn →
R given by

fx(ε,y) = x · A(εy + (1− ε)x)− y · A(εy + (1− ε)x)

= (x− y) · Ax− ε(x− y) · A(x− y).

By definition, (2.7) holds exactly when fx(ε,y) > 0. Thus, we can formulate
the invasion barrier ε̄(y) of x in terms of fx:

ε̄(y) = sup{δ ∈ [0, 1] | fx(ε,y) > 0, ∀ε ∈ (0, δ)}.

Observe that, if fx(·,y) has a unique zero ε◦, then ε̄(y) = ε◦ by definition; if
fx(·,y) is positive-definite, then (2.7) holds for all ε ∈ [0, 1], so we have the
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maximal invasion barrier ε̄(y) = 1. We now proceed to prove that ε̄(y) has
a minimal value on the boundary of the punctured simplex, before showing
that this minimum holds on all of S ′n.

Let S ≡ S(x) be the support of x (cf. (2.2)), recall that x must be in-
different among support strategies, since an ESS is Nash by Proposition 2.3.
Then, for any y 6= x on the boundary face containing x, we have S(y) ⊂ S,
so (2.7) holds (i.e. fx(ε,y) > 0) for all ε. Thus, ε̄(y) = 1 on the boundary
face containing x.

We now observe that, for all y with S(y) 6⊂ S, fx(ε,y) is not the zero
map. To see this, first let

ei · Ay = (Ay)i

{
= λ for ei ∈ S
≤ λ− µ < λ for ei /∈ S

since x is an ESS, which must prefer its own support strategies. Then:

(x− y) · Ax =
∑
ei∈S

(xi − yi)(Ax)i −
∑
ei /∈S

yi(Ax)i

≥ (1−
∑
ei∈S

yi)λ−
∑
ei /∈S

yi(λ− µ) = µ
∑
ei /∈S

yi > 0.

Thus, for fixed y with S(y) 6⊂ S, fx(ε,y) has at most one zero in ε. Let us
now consider all y ∈ S ′n which lie in the union of all boundary faces that do
not contain x: Zx = {y ∈ Sn | yi = 0 for some ei ∈ S}. For fixed y ∈ Zx, if
fx(ε,y) does not have a zero, then (2.7) holds for all ε, so once again ε̄(y) = 1.
Otherwise, fx(ε◦,y) = 0 for ε◦ = (x − y) · Ax/(x − y) · A(x − y) > 0. We
have herein fully specified ε̄ : Zx → R as

ε̄(y) =

{
ε◦ if ε◦ ∈ (0, 1)

1 otherwise.

Thus, ε̄(y) is a positive-definite continuous function on compact domain Zx,
so it has a positive minimum value: minZx ε̄(y) = ε̄ > 0. Then, the minimum
of ε̄(y) on bd(S ′n) is just min{ε̄, 1}.

We now extend this result to all of the punctured simplex: since x and
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Zx together span Sn, we can write any point y′ ∈ S ′n as y′ = αy + (1− α)x
for some y ∈ Zx and α ∈ (0, 1]. But then

fx(ε,y′) = x · A(αεy + (1− αε)x)− (αy − (1− α)x) · A(αεy′ + (1− αε)x)

= αfx(αε,y).

Therefore, for any y′ ∈ S ′n, ε̄(y′) = min{ε̄/α, 1} ≥ ε̄ > 0, which proves the
existence of a positive invasion barrier that holds uniformly for all mutant
strategies.

We are now equipped to formulate the ESS in yet another way: as a locally
superior strategy (Vickers and Cannings, 1987; Hofbauer et al., 1979). This
characterization of the ESS will prove useful in relating static and dynamical
equilibria in §4.2.14

Definition. A strategy x ∈ Sn is locally superior if there exists some neigh-
borhood U of x such that: x · Ay > y · Ay, ∀y ∈ U ∩ Sn, y 6= x.

Proposition 2.6. A strategy is an ESS if and only if it is locally superior.

Proof. Let x ∈ Sn be an ESS. From Theorem 2.1, there exists an ε̄ > 0 so
that condition (2.7) holds uniformly for all ε ∈ (0, ε̄) and all y ∈ Sn, y 6= x.
We now multiply (2.7) by ε and add (1− ε)x ·A(εy + (1− ε)x) to both sides,
to get:

x · A(εy + (1− ε)x) > (εy + (1− ε)x) · A(εy + (1− ε)x).

Thus, x is locally dominant in some neighborhood U = {εy +(1−ε)x | ∀y ∈
Sn, ∀ε ∈ (0, ε̄)}. Since all steps in this proof are reversible, we have proven
the desired result.

Proposition 2.6 is of interest even beyond its application to static and dy-
namic equilibria. It offers an alternative interpretation of the ESS as a best
reply to neighboring strategies in the simplex. We once again invoke the
mathematical equivalence of strategic population states and mixed strategies
to gain intuition: playing a game against a random opponent in a population

14While we only need to prove this result for symmetric two-player games here, a more
general proof can be found in Zeeman (1980).
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of ε y-invaders and (1− ε) x-incumbents gives an expected payoff equivalent
to playing against a fixed opponent whose strategy is shifted an εth of the
way from x to y in the simplex, and who is thus the incumbent’s “neighbor”
in strategy space.

Now having established the key notions of Nash equilibrium and ESS from
static game theory, we introduce the foundations of evolutionary dynamics.
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3 Game Dynamics in Continuum Populations

A static game becomes dynamic when it is mapped to a system of differential
equations, to form a dynamical system. The specific form of the mapping
derives from the assumptions made on how the game is played throughout
the population – in random pairs, in small groups, etc. In this section,
we introduce the necessary mathematical framework of dynamical systems,
before exploring the connection between such a system and an underlying
two-player symmetric game, G = (2,S, A).

3.1 Game Dynamics

Before defining game dynamics, we must define a population on which the
dynamics will operate. As discussed in the introduction, we here consider
an infinite population, which we treat as a continuum of unit mass. A stan-
dard choice for the population’s strategy space is the set of pure strategies
S of the underlying game G, as in Weibull (1995). Thus population states
are analogous to (pure or mixed) strategies of the underlying game: a state
of the population is specified by a vector x in the unit simplex, where xi
is the share of the population playing the pure strategy ei. The notion of
the support of a strategy (cf. (2.2)) translates directly to the support of a
population state, now representing the set of pure strategies being employed
in the population state.

Hofbauer and Sigmund (1998) takes a different approach, choosing for the
population’s strategy space a fixed number of possibly mixed strategies xi

from the original game. While this framework allows for more general strat-
egy spaces, it is in fact mathematically equivalent to Weibull’s pure-strategy
population: simply redefine the underlying game payoff matrix as A′ =
(xi · Axj), and return to the simplex by mapping xi → ei. Thus, without
loss of generality, we can take Weibull’s pure-strategy approach.

Definition. A game dynamics is defined by a system of n time-independent
ordinary differential equations given by

ẋi = xigi(x1, . . . , xn) i = 1, . . . , n (3.1)

where x ∈ Sn is a population state, and g : X → Rn is the growth rate
function, defined on some open domain X ⊂ Rn which contains Sn.
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Note that each component gi(x) = ẋi/xi is just the growth rate of strategy
ei in population state x. Presumably, g is related to the payoff matrix A of
G (though we will not explore possible functional forms of g until we first
prove some general results).

Definition. A solution mapping for the game dynamics (3.1) is a function
ξ : R×X → X such that, for all x ∈ X,

(a) ξ(0,x) = x

(b) ξ̇i(t,x) = ξi(t,x)gi(ξ(t,x)), ∀t ∈ R, for i = 1, . . . , n.

Observe that in our case ξ must be time-invariant, in the sense that:

ξ(t, ξ(t′,x)) = ξ(t+ t′,x) ∀x ∈ Sn, ∀t, t′ ∈ R (3.2)

because of the fact that (3.1) is time-independent. In evolutionary theory,
we are more concerned with the long-run locality of a solution than with its
specific trajectory, for it is the outcome – not the pathway – of evolution
that is of chief interest.15 Thus, our dynamical aim is analogous to finding
Nash equilibria in static game theory: we seek to identify stable, sustainable
behaviors. In a dynamical system, stable behaviors arise in the form of
asymptotic states, which rely on the existence, uniqueness, and continuity
of solution trajectories. To guarantee these conditions, we must impose the
following condition of “regularity.”

Definition. A game dynamics is regular if its growth-rate function g : X →
Rn is Lipschitz continuous16 and satisfies

x · g(x) = 0 (3.3)

for all x ∈ Sn ⊂ X.

Note that continuous differentiability implies Lipschitz continuity, since a
continuous derivative is bounded on a compact set, and thereby satisfies the
condition for Lipschitz continuity. Nearly all well-studied evolutionary mod-
els have growth rates which are at least continuously differentiable, and thus
the key condition for regularity is typically (3.3), not Lipschitz continuity.

15Our preference for asymptotics over trajectories is in part a “de facto” determination,
since evolutionary models for cooperation are more conceptual than rigorously scientific.

16Namely: ∀C ⊂ X compact, ∃λ ∈ R s.t. ||g(x)− g(y)|| ≤ λ||x− y||, ∀x,y ∈ C.
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Proposition 3.1. Any regular game dynamics allows a solution mapping
ξ which defines a unique path ξ(·,x) : R → Sn through each initial state
x ∈ Sn. Moreover, ξ is continuous in t ∈ R and in x ∈ Sn.

Proposition 3.1 follows immediately from the classical result of the Picard-
Lindelöf Theorem.17 Lipschitz continuity allows us to invoke the theorem,
and condition (3.3) allows us to constrain our solutions to the simplex.In
fact, the simplex is not the only set left invariant by our game dynamics, as
the following proposition will illustrate.

Proposition 3.2. The simplex Sn is invariant under regular game dynamics,
in the sense that if x◦ ∈ Sn then ξ(t,x◦) ∈ Sn for all t ∈ R. Moreover, the
the interior of the simplex is invariant, as is each boundary face, and each
vertex.

Proof. We begin by proving that the simplex is invariant for arbitrary initial
state x◦ ∈ Sn. It is clear that regular game dynamics (3.1) preserves the sum
of the coordinates of any vector ξ(t,x◦) = x ∈ X:

d

dt
(
n∑
i=1

ξi(t,x
◦)) =

n∑
i=1

ẋi =
n∑
i=1

xigi(x) = x · g(x) = 0.

Thus it remains to show that each coordinate ξi(t,x
◦) is nonnegative for all

times t ∈ R. Suppose that ξ(·,x◦) leaves the simplex at some time t∗ ∈ R,
i.e. ξi(t

∗,x◦) < 0 for some i. Then, by continuity of ξ, ξi(t
◦,x◦) = 0 for some

t◦ ∈ R. But there is a solution ξ1(·,x1) through the point x1 = ξ(t◦,x◦),
with ξi

1(t,x◦) = 0 for all t ∈ R (since xi = 0 ⇒ ẋi = 0). Then ξ(·,x◦)
and ξ1(·,x1) are distinct solutions (they disagree at t = t∗) which both pass
through the state x1. This contradicts the uniqueness of the solution map-
ping, as given by Proposition 3.1, and thus we have shown that the simplex
Sn is invariant under regular game dynamics.

The invariance of bd(Sn) = {x ∈ Sn | xi = 0 for at least one i ∈ {1, . . . , n}}
follows immediately: ξi(0,x) = 0⇒ ξ̇i(0,x) = 0, and we have already shown
that ξ(·,x) does not leave the simplex for any x ∈ Sn.

Now suppose that int(Sn), the complement of the bd(Sn), is not invari-
ant. Then there exists some x ∈ int(Sn) and t ∈ R such that ξ(t,x) ∈

17Stated in Appendix D.1; see Hirsch and Smale (1974) for proof.
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Sn \ int(Sn) = bd(Sn). But ξ(−t, ξ(t,x)) = ξ(−t+ t,x) = ξ(0,x) from (3.2),
and ξ(0,x) = x ∈ int(Sn), which contradicts the invariance of the simplex
boundary.

Because int(Sn) is invariant, ξi(0,x) 6= 0 ⇒ ξi(t,x) 6= 0 for all t ∈ R.
Thus, not only is the simplex boundary invariant as a whole, but also each
individual boundary face bd(Sn)i = {x ∈ Sn | xj = 0 only for j = i} is
invariant. Finally, each vertex is trivially invariant, since from the game dy-
namics equations, xi = 0 implies that ξi(t,x) = 0 for each i and any time
t.

As an important note, the invariant subsets of the simplex are not invariant
over an infinite time horizon. For example, while an interior solution cannot
reach the boundary of the simplex in finite time, it can possibly converge
to a boundary state as t → +∞. Furthermore, these invariances only hold
under the evolutionary dynamics of selection without mutation; if mutation
is introduced in the form of perturbations in state space, then a population
can evolve from, for instance, a boundary state to an interior state.

We have now shown that every regular game dynamics constitutes a dy-
namical system D, with time range R, state space Sn, and continuous time-
invariant solution mapping ξ : R×Sn → Sn, as in (3.2). We can thus denote
a regular game dynamics by the triple D = (R, Sn, ξ), in analogy to our no-
tation for normal-form games. Many of the ensuing definitions and results
can be formulated for irregular game dynamics, but for our purposes we need
only consider regular dynamics henceforth.

3.2 Equilibrium States

3.2.1 Dynamical Systems Formalism

In attempt to understand the long-run behavioral outcomes of evolutionary
models, we review the fundamental asymptotic features of dynamical sys-
tems. Note that, while the following statements are phrased in terms of our
dynamical system D = (R, Sn, ξ), these results in fact hold for any compact
state space C ⊂ Rn. Accordingly, we will invoke no property of the simplex
but that it is compact.
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Definition. A state x ∈ Sn is a stationary state (also “steady state” or
“fixed point”) of D if ξ(t,x) = x for all t ∈ R.

Definition. A state x ∈ Sn is stable (also “Lyapunov stable”) in D if every
neighborhood U of x contains a neighborhood U ′ of x such that

ξ(t,x′) ∈ U ∀x′ ∈ U ′ ∩ Sn, ∀t ≥ 0.

Definition. A state x ∈ Sn is asymptotically stable in D if it is stable and
there exists a neighborhood U ′ of x such that

lim
t→∞

ξ(t,x′) = x ∀x′ ∈ U ′ ∩ Sn.

By definition, an asymptotically stable state is stable; we now show that a
stable state is stationary.

Proposition 3.3. If a state is stable, then it is stationary.

Proof. Suppose x ∈ Sn is not stationary. Then at some time t, a solution
path leads to a state y 6= x: ξ(t,x) = y. Letting d(x,y) = δ be the Euclidean
distance between the states, we observe that the solution ξ(t,x) leaves the
neighborhood Bδ/2(x) in finite time, so x is not stable.

Thus, all stationary states fall into one of three categories, based on a state’s
response to perturbations in state space: (i) small perturbations drive the
system away from the state (unstable); (ii) small perturbations leave the sys-
tem forever within in a small neighborhood of the state (stable); (iii) small
perturbations are soon counteracted as the system always returns to the state
(asymptotically stable).

Stationarity and stability are key to our assessment of the behavioral out-
comes of evolution. An unstable stationary state is only robust in the unper-
turbed dynamics, which represent selection without mutation, and thus such
a state cannot be maintained by a population in a long-term evolutionary
context. A stable state that is not asymptotically stable is not evolutionarily
favored, for selection does not preferentially drive nearby populations to the
state. If such a state is arrived at, there can be “neutral drift,” or uncorrected
mutations, which can lead to nearby (possibly unstable) states. Thus, true
evolutionary stability in a dynamical system requires robustness to mutation,
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which is only achieved by asymptotic stability. In an asymptotically stable
population state, perturbative mutations are corrected by selection; this is
the conceptual analogy of the ESS from 2.2. We will explore in §3.3 the ex-
tent to which dynamically stable states are, like the static ESS, refinements
of the fundamental notion of Nash equilibrium.

But first, in accordance with our interest in long-term behavior, we define one
last form of asymptotic equilibrium, which formalizes the notion of long-run
dynamical outcome.

Definition. The Ω-limit of a state x ∈ Sn is the set of all accumulation
points of the solution through x:

Ω(x) = {y ∈ Sn | lim
tk→+∞

ξ(tk,x) = y, for some sequence {tk} ⊂ R}.

Since our system D leaves the simplex invariant, and every infinite sequence
in a compact set has an accumulation point, it follows that every population
state x ∈ Sn has a nonempty Ω-limit. With the following proposition, we
prove that when the Ω-limit consists of a sole accumulation point, it is in
fact stationary.

Proposition 3.4. Any state which constitutes the Ω-limit of another state
is stationary.

Proof. Let {y} = Ω(x), for x,y ∈ Sn. Then limt→+∞ ξ(tk,x) = y, so
that for any neighborhood U of y, there exists some tU ≥ 0 with ξ(t,x) ∈
U, ∀t ≥ tU . Suppose that y is not stationary. Then ξ(t∗,y) 6= y, for some
time t∗ ≥ 0. Thus, since ξ(t∗,y) is continuous in y (by Proposition 3.1),
there exists a neighborhood V of y such that every trajectory beginning in
V is elsewhere at time t = t∗: ξ(t∗,y′) /∈ V, ∀y′ ∈ V .

Now, letting U = V , we have that ξ(t,x) ∈ V, ∀t ≥ tV , with y′ ≡
ξ(tV ,x) ∈ V . By (3.2) we can specify any trajectory beginning at y′ as
ξ(t,y′) = ξ(t, ξ(tV ,x)) = ξ(t + tV ,x) ∈ V, ∀t ≥ 0. Setting t = t∗, we then
have that ξ(t∗,y′) ∈ V . But y′ ∈ V , which is a contradiction.

Proposition 3.4 establishes the direct link between long-term dynamical be-
havior and stationarity. Thus, we have verified that finding the stationary
states of a game dynamics sufficiently determines the long-run evolutionary
outcomes.

28



3.2.2 A Brief Note on Computation

While our classification of stationary states thus far is useful in developing an
intuition for dynamical equilibria, as well as in proving the ensuing theoreti-
cal results, it does not immediately allow us to determine the stable states of
a given model. Stationary states are often analytical solvable, from the sys-
tem of equations: ẋi = 0, i = 1, . . . , n. Otherwise, numeric integration can
be used to simulate solution trajectories from many random initial states,
yielding stationary states in the form of Ω-limits.

Once stationary states are obtained, we typically determine stability in a
game dynamics by analyzing the eigenvalues of the system’s Jacobian ma-
trix J (x) evaluated at each stationary state.18 Given a stationary state x,
an eigenvalue of J (x) with positive real part indicates a positive velocity
away from x in the direction of the corresponding eigenvector. In evolution-
ary terms, given a mutation toward this critical eigenstate, selection drives
the population away from x. Thus, for a stable state x, no eigenvalue of
J (x) can have positive real part; for an asymptotically stable state x, all
eigenvalues of J (x) must have negative real part. The linearization theorem
of Hartman (1960)19 formally justifies this Jacobian-based stability analysis.
Dynamic stability analysis cannot always be performed via linearization, but
this method is commonly used in evolutionary dynamics, and it will suffice
for our purposes in §5.

3.3 Dynamic and Static Equilibria

We now explore the connection between long-run game-dynamical behavior
and static game theory. Imposing some basic requirements on the relation-
ship between the dynamical system D and the underlying game G, we can
prove strong results connecting dynamic equilibria and Nash equilibria.

18Denoting the game dynamics (3.1) as fi(x) = xigi(x), the Jacobian of the system at
a state x is: J (x) =

(
∂fi

∂xj
(x)
)

.
19Which we state, but not prove, in Appendix D.2.
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3.3.1 Weak Payoff Positivity

We begin by defining for any point x ∈ Sn a corresponding set

B(x) = {ei ∈ Sn | ei · Ax > x · Ax}. (3.4)

Interestingly, the meaning of this set can be interpreted in several ways, since
a point in the simplex can be taken to represent either a mixed strategy in
the underlying game G, or a population state in the dynamical system D.
Here we choose the interpretation of Weibull (1995), that B(x) is the (pos-
sibly empty) set of pure strategies which earn above average payoff if G is
played by random pairs of individuals throughout a population in state x.

We now introduce a game dynamics condition stronger than regularity.

Definition. A regular game dynamics (3.1) is weakly payoff positive if, for
all x ∈ Sn,

B(x) 6= ∅ ⇒ gi(x) > 0 for some ei ∈ B(x). (3.5)

Weak payoff positivity is not so much to ask – it only requires that if any
pure strategies earn above the population average payoff, at least one such
strategy grows in the population. Indeed, weakly payoff positive dynamics is
the largest class of game dynamics for which we can prove the Folk Theorem
of Evolutionary Game Theory, a powerful result that classifies fundamental
game-dynamical equilibria as Nash equilibria of the underlying game (Hof-
bauer and Sigmund, 1998; Fudenberg and Levine, 1998; Weibull, 1995).

Theorem 3.1 (Folk Theorem of Evolutionary Game Theory). In weakly
payoff positive game dynamics, given by dynamical system D = (R, Sn, ξ)
and underlying game G = (2, S, A), the following implications hold:

(a) If the state x ∈ int(Sn) is stationary in D, then the corresponding
strategy x is a symmetric Nash equilibrium of G.

(b) If the state x ∈ Sn is stable in D, then the corresponding strategy x is
a symmetric Nash equilibrium of G.

(c) If the state {x} = Ω(y) for some y ∈ int(Sn), then the corresponding
strategy x is a symmetric Nash equilibrium of G.
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Proof. First, observe that B(x) = ∅ ⇒ ei · Ax ≤ x · Ax ∀i ⇒ x is Nash
(cf. (2.5)).

(a) Let x ∈ int(Sn) be stationary in D. Then ẋi = xigi(x) = 0 for all i,
because x is stationary, and xi 6= 0 for all i because x ∈ int(Sn). Thus
gi(x) = 0 for all i, which implies B(x) = ∅, so x is Nash in G.

(b) Let x ∈ Sn be stable (hence stationary) in D. By similar logic as (a),
gi(x) = 0 whenever ei ∈ S(x). Now suppose that x is not Nash in G.
Then B(x) 6= ∅, so by weak payoff positivity, there is some ej ∈ B(x)
for which gj(x) > 0, and also ej /∈ S(x), i.e. xj = 0.

Since g is continuous in a regular dynamics, there exists some δ > 0
and neighborhood U ⊂ Sn of x such that gj(x

′) > δ for any x′ ∈ U .
Then, recalling the game dynamics (3.1), we have

ξ̇j(t,x
′) = ξj(t,x

′)gj(ξ(t,x′)).

Then, if ξ(t,x′) ∈ U whenever t ∈ [0, t∗),

log

(
ξj(t,x

′)

ξj(0,x′)

)
=

∫ t

0

gj(ξ(τ,x′))dτ >

∫ t

0

δdτ

which implies:

ξj(t,x
′) > x′je

δt.

Thus, while xj = 0, ξj(t,x
′) grows exponentially as long as ξ(t,x′) ∈ U .

In particular, for any neighborhood U ′ ⊂ U of x, the solution ξ(t,x′)
leaves U ′ as t → t∗, contradicting the fact that x is stable. Thus, x is
Nash in G.

(c) Let {x} be the Ω-limit of y for some y ∈ int(Sn), namely: limt→ +∞ ξ(t,y) =
x. Then by Proposition 3.4, x is stationary. Thus we begin in the same
manner as (b): supposing x is not Nash, we have that B(x) 6= ∅, so
that there is some ej ∈ B(x) for which gj(x) > 0 and xj = 0.

Since g is continuous, there exists some neighborhood U ⊂ Sn of x
such that gj(x

′) > 0 for any x′ ∈ U . Also, since ξ(t,y) → x as
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t → +∞, there is a time t∗ > 0 such that ξ(t,y) ∈ U for all t ≥ t∗.
But since xj = 0, we must have ξj(t,y) < 0 for some t ≥ t∗, which
contradicts the fact that gj is positive on U . Thus x is Nash in G.

The Folk Theorem asserts that, in a weakly payoff positive game dynamics,
certain forms of dynamical equilibrium are at least a strong as the static
Nash equilibrium. This alone does not qualify these dynamical equilibria
as meaningful refinements of the Nash equilibrium. However, as discussed
previously, the asymptotically stable state is our best candidate for Nash re-
finement, since it is robust to invasion by mutant strategies in the dynamical
setting – much like the ESS in static game theory. Thus, the Folk Theorem,
together with our evolutionary intuition, establishes asymptotic stability as
a refinement of the Nash equilibrium, under certain game dynamics.

3.3.2 Monotonicity

We can develop even stronger connections between dynamic and static equi-
libria for a subclass of weakly payoff positive dynamics known as monotonic
game dynamics.

Definition. A regular game dynamics (3.1) is convex monotonic if, for any
states x,y ∈ Sn, the ranking of pure- versus mixed-strategy growth rates
respects their difference in payoff:

ei · Ax > y · Ax⇐⇒ gi(x) > y · g(x) ∀i ∈ {1, . . . , n}. (3.6)

We say that the game dynamics is simply monotonic if the above implication
is only guaranteed for any pure strategy y = ej.

Thus convex monotonicity implies monotonicity by definition, and the fol-
lowing proposition tells us that monotonicity in turn implies weak payoff
positivity.

Proposition 3.5. A monotonic game dynamics is weakly payoff positive.

Proof. Assuming monotonicity, we aim to show that condition (3.5) holds
for an arbitrary population state x ∈ Sn. Since x is a vector of nonnegative
weights, and x · g(x) = 0 in any regular dynamics, it is always true that
either gi(x) = 0 for all i, or gi(x) > 0 for some i. In the first case, condition
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(3.5) holds trivially. In the latter case, we can choose the strategy ei which
maximizes payoff ei · Ax, and monotonicity then guarantees that gi(x) will
be maximal, hence positive. Thus, ei ∈ B(x), so (3.5) holds.

We now prove that any monotonic dynamics eliminates from the population
any pure strategy that is iteratively strictly dominated (cf. (2.6)) in the
underlying game.20 This is a useful property of monotonic dynamics that is
not guaranteed in the broader class of weakly payoff positive dynamics. It
turns out that monotonicity suffices to eliminate only those pure strategies
which are iteratively strictly dominated by some other pure strategy; we
need convex monotonicity to guarantee the elimination of pure strategies
dominated by any other strategy (Hofbauer and Weibull, 1996).

Theorem 3.2. Let ei be a pure strategy that is iteratively strictly dominated
in a game G. Then, under any convex monotonic game dynamics D, the
proportion of the population playing ei converges to zero from any interior
initial state:

lim
t→+∞

ξi(t,x) = 0 ∀x ∈ int(Sn).

Proof. Recall from §2.1 the discussion of iterative strategic dominance, with
S1,S2, . . . ,ST denoting the iteratively trimmed strategy sets of G = (2,S, π).
Let S◦ ⊆ S be the set of pure strategies which are iteratively strictly dom-
inated by pure strategies, but do not converge to zero under the dynamics
D. Also, for notational convenience in this proof, we will let S = {1, . . . , n},
and refer to a pure strategy ei simply as “strategy i.”

Suppose that S◦ 6= ∅. For any i ∈ S◦, let τ(i) denote the number of it-
erative deletions necessary to eliminate strategy i, namely i ∈ Sτ(i) \ Sτ(i)+1.
Let k ∈ S◦ minimize τ(i) on S◦, and τ = τ(k) (i.e., of the strategies which
do not converge to zero in D, strategy k is the first to be eliminated, in
the τth trimmed subgame). Then there is a strategy y ∈ Sn such that
ek · Aej < y · Aej for all j ∈ Sτ . Note that because τ = τ(k) is minimal,
limt→+∞ ξj(t,x) = 0 for any j /∈ Sτ , since any such strategy j is strictly

20See Samuelson and Zhang (1992) for a proof of this result for all (not necessarily
symmetric) two-player normal-form games.
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dominated and not in S◦. Thus, as t→ +∞,

ek · Aξ(t,x)− y · Aξ(t,x) =
∑
j ∈ Sτ

(ek · Aej − y · Aej)ξj(t,x)

+
∑
j /∈ Sτ

(ek · Aej − y · Aej)ξj(t,x)

→
∑
j ∈ Sτ

(ek · Aej − y · Aej)ξj(t,x) ≤ 0.

Strict inequality is guaranteed if x ∈ int(Sn), so that ξj(t,x) 6= 0 ∀j.

Then, by convex monotonicity, gk(ξ(t,x))−y ·g(ξ(t,x)) < 0 for x ∈ int(Sn).
By regularity, g is continuous, so there exists an ε > 0 and a t∗ > 0 such
that:

gk(ξ(t,x))− y · g(ξ(t,x)) =
ξ̇k(t,x)

ξk(t,x)
−

n∑
i=1

yi
ξ̇i(t,x)

ξi(t,x)
≤ −ε ∀t > t∗.

Integrating from t∗ to t, we get:

ξk(t,x)∏n
i=1 ξi(t,x)yi

≤ ξk(t
∗,x)∏n

i=1 ξi(t
∗,x)yi

e−ε(t−t
∗) ∀t > t∗.

Since
∏

i ξi(t,x)yi ≤ 1, this implies that limt→+∞ ξk(t
∗,x) = 0, which contra-

dicts the fact that k ∈ S◦. Hence S◦ = ∅, as desired.

The corresponding result for a general monotonic dynamics is an immediate
corollary to Theorem 3.2: taking y to be a pure strategy in the above proof,
we see that a monotonic game dynamics guarantees that any pure strategy
strictly dominated by another pure strategy converges to zero in the dynam-
ical population.

Theorem 3.2 (and its corollary result) establishes a meaningful property of
monotonic dynamics, in that any asymptotically reachable state must be
“rational,” in the sense that no portion of the population plays a strategy
which is strictly dominated (hence “irrational”) in the underlying game. This
property can be seen as both a strongpoint and a limitation of monotonic
dynamics: on the one hand, the dynamics can perhaps help to refine our
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notion of stable rational behavior in a game; at the same time, the dynam-
ics is so intimately tied to the underlying game that economically irrational
behaviors are not allowed to evolve.

We can further bolster our understanding of monotonic dynamics with a
precise characterization of its stationary states in terms of underlying game
payoffs (Weibull, 1995):

Proposition 3.6. Under any monotonic game dynamics, the set of station-
ary states is given by

S◦n = {x ∈ Sn | ei · Ax = x · Ax, ∀ei ∈ S(x)}. (3.7)

Proof. By definition of monotonicity, x ∈ S◦n if and only if gi(x) = c for some
c ∈ R and any ei ∈ S(x). This is equivalent to x · g(x) = c, and we require
that c = 0 in any regular dynamics. Thus x is a stationary state. Since
the preceding implications are all bidirectional, we have proven that S◦n is
precisely the set of stationary states in a monotonic game dynamics.

Proposition 3.6 allows for explicit computation of stationary states in a finite
game: there are finitely many support sets,21 and for each support set there
are an equal number of linear equations ((Ax)i = x · Ax, ∀ei ∈ S(x)) and
unknowns (xi, ∀ei ∈ S(x)).

Also, note that S◦n is precisely the set of Nash equilibria of all subgames
of the underlying game G (where a subgame is simply a restriction of G to
some subset of its original pure strategy set). To see this: any x ∈ S◦n is
Nash in the subgame restricted to the strategy space S(x), and conversely
any Nash strategy x lies in S◦n because x is indifferent among the strategies
in S(x).

While Proposition 3.6 fully determines stationarity in a monotonic game
dynamics, it tells us nothing of stability. As discussed in §3.2, an unstable
stationary state is only robust in the unperturbed dynamics, i.e. under se-
lection without mutation, and thus cannot be maintained by a population in
a long-term evolutionary context.

21Namely, an n-strategy game has 2n = |P({1, . . . , n})| possible support sets.
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There are other classifications of dynamics which lead to more nuanced con-
nections between static and dynamic equilibria, but the results proven thus
far will suffice for our purposes. Further investigation is left to the compelled
reader.
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4 Specific Dynamics

Now having established some key results connecting static games and evo-
lutionary dynamics in general, we develop two particular dynamical models.
The discussion of their specific dynamics will serve to illustrate the theoreti-
cal results of §3, as well as to lay the foundations for our study of cooperation
and punishment in §5.

4.1 Fitness and Selection Strength

To move from the general game dynamics (3.1) to a specific evolutionary
model, we must specify each strategy’s growth rate as a function of popula-
tion state and underlying game payoffs. Typically a fitness function is first
defined from payoffs, and then a game-dynamical growth rate is derived from
fitness. While this intermediary fitness mapping may seem a tedious formal-
ity, it is in fact both conceptually and mathematically advantageous to embed
a manipulable fitness function within the rigid structure of a game dynamics.

Traulsen et al. (2008) discuss the choice of functional form for the payoff-
to-fitness mapping, which determines individuals’ “evolutionary fitness” in a
population state, based on their expected payoffs from playing the underlying
game against random opponents. While in most cases changing the fitness
mapping alters only the rate of selection, and not the critical evolutionary
outcomes of the dynamics, there are cases when the choice of fitness is crucial
and relevant.

Since the individuals in our population are distinguishable only by the strate-
gies they employ, it suffices to define a fitness function for each pure strategy.
The traditional fitness of strategy ei is given by the linear map

fi(x) = 1− w + w(ei · Ax) (4.1)

where w ∈ [0, 1] gives the strength of selection, i.e. the extent to which evo-
lutionary fitness depends on game payoff. Under strong selection, or w = 1,
individuals’ evolutionary fitness is entirely determined by their payoffs in the
specified underlying game. The opposite extreme, w = 0, corresponds to
neutral drift, when evolution pays no heed to the outcome of the underlying
game, thus barring any nontrivial evolutionary analysis.
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An alternative formulation of fitness is the exponential mapping

fi(x) = eω(ei·Ax) (4.2)

where ω > 0 is the selection strength, analogous to w in the linear map.
The exponential fitness is in some sense more general than linear fitness,
since there is a greater range of selection strength achievable through ω than
through w.

We now consider the effects of varying the selection strength parameter in
both fitness mappings. It is reasonable to suppose that, in general, the evo-
lutionary fitness of individuals in a population is determined by many factors
– including other games – and that the particular underlying game in consid-
eration only contributes in part to this overall fitness (Traulsen et al., 2007).
The notion of weak selection achieves this aim: when w � 1 in (4.1), or
ω sufficiently small22 in (4.2), game payoffs are just slight perturbations of
individual fitnesses, which are all very close to 1. In the weak selection limit
ω = w → 0, the two fitness mappings are approximately equivalent:

fi(x) ≈ 1 + w(ei · Ax) (4.3)

This limit can be illuminating, especially in the analysis of stochastic dynam-
ics for finite populations (Nowak et al., 2004), or when the game dynamical
system of equations is too complex for analytical solutions (as we will witness
in §5.3).

4.2 Replicator Dynamics

The original paradigm for evolutionary dynamics, first introduced by Taylor
and Jonker (1978), is the now-ubiquitous replicator dynamics. The replicator
dynamics have many widespread motivations and justifications, for instance
as a form of imitation or learning (Traulsen and Hauert, 2008), as utility-
based economic competition (Fudenberg and Levine, 1998), or simply as
biological survival-of-the-fittest (Hofbauer and Sigmund, 1998).23 Keeping in

22We seek ω small enough that we may take the first-order Taylor approximation of the
fitness function.

23In particular, Hofbauer and Sigmund (1998) present a differentiable, invertible map
that proves the equivalence of the replicator dynamics and the famous Lotka-Volterra
equations governing predator-prey population dynamics in ecology.
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mind this notion of imitation, which is perhaps best suited for the evolution of
cooperation, we proceed in deriving the replicator dynamics from the general
game dynamics (3.1).

4.2.1 Motivation and Definition

The replicator dynamics stems from, in some sense, the “simplest” possible
growth rate function g(x) in the game dynamics (3.1). We first suppose
that the growth rate of individuals playing strategy ei in a population is
directly proportional to the strategy’s linear fitness (4.1). This leads to a
(not necessarily simplex-constrained) continuous-time dynamical system,

ẏi = yifi(x)

where yi is the number of individuals in the population playing strategy ei,
and x ∈ Sn is the strategic population state, as usual. This system induces
a game dynamics in the population shares xi = yi/

∑n
j=1 yj,

ẋi =
ẏi
∑n

j=1 yj − yi
∑n

j=1 ẏj

(
∑n

j=1 yj)
2

= xifi(x)− xi
n∑
j=1

xjfj(x)

= xi(fi(x)− φ(x)) (4.4)

where φ(x) =
∑

j xjfj(x) is the average fitness of a population in state
x, or equivalently, the expected payoff in a game between two randomly
chosen members of the population. The dynamical system (4.4) is known as
the replicator dynamics, first introduced by Taylor and Jonker (1978). By
substituting the linear fitness expression (4.1) into (4.4), we can easily verify
that the selection strength parameter w has no effect on the dynamics beyond
a universal “velocity” factor, which alters the speed of evolution uniformly
for all strategies. Thus, without loss of generality, we can take the strong
selection limit w = 1, to achieve a more concrete form of the replicator
dynamics,

ẋi = xi(ei · Ax− x · Ax) i = 1, . . . , n. (4.5)

The preceding derivation illustrates our initial claim that the replicator dy-
namics is the “simplest” form of regular game dynamics: the mapping from
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payoff to fitness to growth rate is the minimal deviation from the identity map
necessary to leave the unit simplex invariant. Intuitively, this growth rate is
given by the difference between the expected payoff of playing a randomly
chosen opponent, and the population average expected payoff φ(x) = x ·Ax
(as mentioned above).

We now observe that the replicator dynamics is a regular game dynamics
(cf. (3.3)). Regularity follows from the fact that g is polynomial (hence
Lipschitz continuous) in x, and (4.5) is invariant on Sn by construction:

x · g(x) =
n∑
i=1

xi(ei · Ax− x · Ax) = x · Ax− (x · Ax)
n∑
i=1

xi = 0.

Furthermore, we can establish the stronger property of convex monotonicity,
in the sense of (3.6).

Proposition 4.1. The replicator dynamics (4.5) is convex monotonic.

Proof. For any strategy i, the following holds for all x,y ∈ Sn:

ei · Ax > y · Ax⇐⇒ ei · Ax− x · Ax > y · Ax− x · Ax

⇐⇒ gi(x) >
n∑
i=1

yi(ei · Ax)− (
n∑
i=1

yi)(x · Ax)

⇐⇒ gi(x) > y · g(x).

This satisfies the definition (3.6) of convex monotonicity.

Thus, recalling the results of §3.3, Proposition 4.1 allows us to use the Folk
Theorem 3.1, as well as Theorem 3.2, to describe the asymptotic behavior of
the replicator dynamics. Moreover, the next section will establish an even
stronger result, which intimately relates the asymptotics of the replicator
dynamics to the evolutionarily stable state from static game theory.

4.2.2 Asymptotic Stability and the ESS

Taylor and Jonker (1978) first established the connection between a stable
state in the replicator dynamics and an ESS of the underlying game. Hof-
bauer et al. (1979) offer a refinement of the original result, which is of greater
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interest to us. Its proof is an application of Lyapunov’s second stability the-
orem, which we here state but not prove.24

Theorem (Lyapunov Stability Theorem). Let D = (R, C, ξ) be a dynamical
system defined on some compact subset C of Rn. A point x ∈ C is asymp-
totically stable if and only if there exists a neighborhood U ⊂ C of x and a
continuous function v : U → R such that the following conditions hold:

v(x) is the unique maximum of v on U. (4.6)

v(ξ(t,x′)) > v(x′) if x′ 6= x, t > 0, and ξ(t′,x′) ∈ U ∀t′ ∈ [0, t]. (4.7)

In words, Lyapunov’s theorem guarantees the asymptotic stability of a state
in a dynamical system, if we find a real-valued function on the state space
that meets conditions (4.6) and (4.7). Note that condition (4.7) mandates
that the Lyapunov function be strictly increasing on every trajectory in a
neighborhood of the asymptotically stable state. If the function is differen-
tiable, this translates to having a positive-definite derivative along every such
trajectory.

Theorem 4.1. Any ESS of an underlying game is an asymptotically stable
state in the replicator dynamics.

Proof. We will prove the theorem by invoking Lyapunov’s theorem for the
replicator dynamics, using the well-known “entropy function”:

Ex(y) =
n∏
i=1

yxii .

It is well-known that Ex(y) has a unique maximum on the simplex at y = x.25

To compute this explicitly, we maximize the logarithm of the monotonic
function Ex using the technique of Lagrange multipliers:

∂ log(Ex(y))

∂yi
= xi/yi = λ.

24See Weibull (1995) for proof and references. Note that Lyapunov’s theorem is for-
mulated more generally for asymptotically stable closed sets; we here state a special case
of the theorem, when the set is a singleton. Also, the inequality is typically reversed in
condition (4.7), which is equivalent to multiplying our Lyapunov function by a factor of
−1.

25For instance, Ex(y) is the likelihood function for random sampling from a multinomial
distribution, and the maximum likelihood estimate for a sample y is proportional to the
sampling probabilities x.
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Constraining y to the simplex then gives λ = 1, i.e. y = x.

Recall from the proof of Theorem 2.1 that the set of all boundary faces
of Sn which do not contain x is a closed set. Thus, its complement in Sn is
an open neighborhood of x:

Ux = {y ∈ Sn | yi > 0 whenever ei ∈ S(x)}.

It is clear that Ex(y) > 0 for y ∈ Ux. Furthermore, under the replicator
dynamics (4.5), we have:

Ėx
Ex

=
d

dt
log Ex =

d

dt

n∑
i=1

xi log yi =
∑

ei∈S(x)

xi
ẏi
yi

=
∑

xi((Ay)i − y · Ay)

= x · Ay − y · Ay.

Proposition 2.6 guarantees that any ESS is locally superior, i.e. x ·Ay− y ·
Ay > 0 in some neighborhood Vx of x. Thus Ėx(y) > 0 on the neighborhood
Vx∩Ux of x, so Ex is a strict local Lyapunov function, and x is asymptotically
stable in the replicator dynamics.

Van Damme (1987) shows by counterexample that the converse of Theorem
4.1 does not hold in general. Thus, while the Folk Theorem 3.1 tells us that
(in any weakly payoff positive dynamics) an asymptotically stable state is a
refinement of the symmetric Nash equilibrium, we find that in the replicator
dynamics, it is a weaker refinement than the ESS. The replicator dynamics
can then be used to find game equilibria that are compromises between Nash
and ESS conditions, but it does not offer us a refined notion of equilibrium
that is stronger than (or unrelated to) the ESS. In §4.4.1 our analysis of
two-strategy replicator systems demonstrates this inescapable link between
stability in the replicator dynamics and ESS’s of the underlying game.

4.3 Viability Updating

We now introduce a game dynamics which operates by a selection mech-
anism quite different from that of the replicator dynamics. We have seen
that the replicator dynamics is convex monotonic, and thus firmly supports
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the notions of strategic dominance and rationality in the underlying game.
Viability updating, on the other hand, is not even weakly payoff positive,
and thus it may allow conventionally irrational strategies to persist through
evolution. In particular, our viability model operates through random inter-
actions of small groups of individuals in a population, while the replicator
dynamics is premised on random pairwise interactions. Thus viability up-
dating captures the gregarious aspect of evolution, which favors strategies
that are self-reinforced by “ganging up” on other strategies.

4.3.1 Motivation and Definition

Viability updating, like the replicator dynamics, begins with the reasonable
fundamental assumption that individuals with lower fitnesses are more likely
to change strategy (or “die” in a biological context). Furthermore, following
the derivation of Ohtsuki (2008), we develop viability updating in a z-mixed
population, in which individual fitness is determined from playing an under-
lying game G in random groups of z individuals.

Thus, at any instant in time, we successively randomly choose: (1) an indi-
vidual to possibly change strategy (the imitator), (2) z− 1 other individuals
to form an interaction group (the z-group), and (3) a member of the z-group
whose strategy is possibly adopted by the imitator (the imitatee). Observe
that the probabilistic constituents of this random z-group is governed by
random sampling from the multinomial distribution,

M(z; z,x) ≡ z!

z1! · · · zn!
xz11 · · ·xznn . (4.8)

In words, M(z; z,x) gives the probability that exactly zi individuals of each
strategy ei appear in a random group of z =

∑n
i=1 zi individuals.

The payoff an ei-individual receives in a z-group of composition z is just
ei ·Az. Thus, recalling our original updating assumption, the imitator adopts
the imitatee’s strategy with probability inversely proportional to the fitness of
the imitator, where fitness fi(z) derives from game-play within the z-group.
To keep this probability nonnegative, we take fi to be the exponential payoff-
to-fitness mapping given by (4.2). Then, the probability that an imitator of

43



strategy ei changes strategy is just

pi(z) =
γ

fi(z)

= γe−ω(ei·Az) (4.9)

where γ is chosen so that pi(z) is less than 1.26 Recall from (4.2) that ω is the
selection strength, and that the weak selection limit corresponds to ω → 0.

We are now equipped to construct the differential equations which spec-
ify the dynamics of viability updating. At any instant in time, a player of
strategy ei is imitated by a player of strategy ej with probability

xj
∑
z

M(z; z,x)pj(x)
zi
z

(4.10)

where xj is the probability that an ej-player is chosen as imitator, M(z; z,x)
is the probability of interaction in a z-group of composition z, zi/z is the
probability that an ei-player in the z-group is chosen as imitatee, and pj(x)
is the probability that the chosen imitator changes strategy. Similarly, the
probability that an ei player imitates another strategy is

xi
∑
z

M(z; z,x)pi(x). (4.11)

Thus, from (4.10) and (4.11), we get the viability updating differential equa-
tions:

ẋi =
n∑
j=1

xj
∑
z

M(z; z,x)pj(x)
zi
z
− xi

∑
z

M(z; z,x)pi(x) (4.12)

for i = 1, . . . , n. Recall that z ranges over all n-tuples of nonnegative integers
that sum to z. The form of (4.12) can be somewhat simplified by using
vector notation, but the simplification is inconsequential since the system of
equations is analytically intractable for n strategies and arbitrary selection
strength ω. Indeed, we will see in our analysis of an eight-strategy game in
§5 that we need to invoke the weak selection limit ω → 0 in order to achieve
analytical results on the interior of the population simplex.

26For instance, if the minimum possible payoff achieved in a z-group is some negative
value P < 0, it suffices to let γ = eωP .
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4.3.2 Dynamical Classification

Unlike the replicator dynamics, which we derived by setting each strategy’s
growth rate equal to its fitness, the viability model is not so easily defined
in terms of the game-dynamical growth rate function in (3.1). The viability
equations (4.12) implicitly define the growth rates ẋi/xi = gi(x), which are
well-behaved functions because each ẋi has a zero at xi = 0.27 Moreover, each
growth rate gi(x) is a continuously differentiable function on Sn because it
is composed of rational and exponential functions that have no poles on the
simplex. Thus, it remains to show that x · g(x) =

∑n
i=1 ẋi = 0 to verify that

the viability model (4.12) is a regular game dynamics, in the sense of (3.3).
We see that, as desired,

n∑
i=1

ẋi =
n∑
i=1

n∑
j=1

xj
∑
z

M(z; z,x)pj(x)
zi
z
−

n∑
i=1

xi
∑
z

M(z; z,x)pi(x)

=
n∑
j=1

xj
∑
z

M(z; z,x)pj(x)−
n∑
i=1

xi
∑
z

M(z; z,x)pi(x)

= 0.

Thus, the viability model (4.12) is a regular game dynamics, and we can
now ask the question of whether viability updating satisfies any stronger
conditions, such as weak payoff positivity (or monotonicity) from §3.3. In
fact, we will prove by a simple two-strategy counterexample in §4.4.2 that the
viability model does not guarantee weak payoff positivity (nor monotonicity).
Thus, viability updating may lead to evolutionary outcomes very different
from the replicator dynamics, and from static game analysis.

4.4 Two-Strategy Dynamics

A brief study of two-strategy dynamics is useful both as a simple example of
the replicator and viability equations, and as a means of analyzing the edge
dynamics of multi-strategy evolutionary games. For instance, we will use
these results in §5 in order to compute the dynamics of an 8-strategy game
on the edges of the population simplex.

27To see this, observe that when xi = 0, zi = 0 with probability 1.
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We begin with an arbitrary two-strategy game, given by the general pay-
off matrix

A =

( 1 2

1 a b
2 c d

)
. (4.13)

Let x = x1 and 1 − x = x2, so that a game dynamics is specified by a
single differential equation ẋ, defined on the simplex S1 = [0, 1]. The pure
population states x = 0 and x = 1, or the vertices of S1, are stationary
by Proposition 3.2. Thus, we can classify the evolutionary behavior of two-
strategy systems based on the dynamical response to perturbations from the
two stationary pure states. Such a perturbation represents an invasion by
mutants of one strategy in a population predominated by the other strategy,
and the stability of each pure population state can be expressed concisely in
terms of the population’s response to invaders, who constitute an arbitrarily
small population share ε > 0.

Proposition 4.2. For two-strategy game dynamics, there are four critical
types of evolutionary behavior, based on each strategy’s possible response to
a ε-invasion by the other strategy:

(a) Dominance: a strategy is dominant if it is asymptotically stable, or if
it is stable and the other strategy is unstable. For instance, strategy 1
is dominant if

ẋ ≥ 0 for x ≥ 1− ε and ẋ ≥ 0 for x ≤ ε

with ẋ ≥ 0 holding strictly in at least one of the two cases. (Reversing
this inequality gives the condition for strategy 2 dominating.)

(b) Bistability : strategies 1 and 2 are bistable if they are each asymptoti-
cally stable:

ẋ > 0 for x ≥ 1− ε and ẋ < 0 for x ≤ ε.

(c) Coexistence: strategies 1 and 2 coexist if they are both unstable:

ẋ < 0 for x ≥ 1− ε and ẋ > 0 for x ≤ ε.

(d) Neutrality : strategies 1 and 2 are neutral if they are both stable, but
not asymptotically so:

ẋ = 0 for x ≥ 1− ε, x ≤ ε.
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It is easy to interpret the fate of invaders in each scenario in Proposition
4.2, using the fact that invaders grow, stagnate, or die, if the invaded pop-
ulation state is respectively unstable, stable, or asymptotically stable. A
two-strategy game dynamics can be quite complex on the entirety of S1,
with the possibility of many interior stationary states; however, Proposi-
tion 4.2 elegantly reduces all such dynamics to their evolutionary essence, in
terms of simple invasion conditions. We now derive these invasion conditions
explicitly in terms of game payoffs, for the replicator and viability models.

4.4.1 The Replicator Equation

When applied to the two-strategy game (4.13), the replicator dynamics (4.5)
reduces to a single differential equation:

ẋ = x[(ax+ b(1− x))− (ax2 + (b+ c)x(1− x) + d(1− x)2)]

= x(1− x)[(a− b− c+ d)x+ b− d] (4.14)

where x1 = x and x2 = 1−x. Thus, in addition to the stationary pure states
x = 0, x = 1, the replicator equation (4.14) exhibits a stationary state,

x∗ =
d− b

(a− c) + (d− b)
(4.15)

which is a population state in the simplex S1 if d − b > 0 and a − c >
0. Thus, the force of selection can change direction (ẋ can change sign)
across at most one population state. In particular, selection must drive
the population toward a pure population state, or else toward a globally
attractive interior state. Indeed, we can use this potential interior equilibrium
(4.15) to fully classify the two-strategy dynamics – not only in terms of
the invasion condition of Proposition 4.2, but also along the interior of S1

(Traulsen and Hauert, 2008; Nowak, 2006).

Proposition 4.3. We here fully classify the two-strategy replicator dynamics
(4.14) based on the payoffs of the underlying game (4.13).

(a) Dominance: a strategy is dominant in the two-strategy replicator dy-
namics if it is asymptotically stable on the interior of the simplex. For
instance, strategy 1 is dominant if:

a ≥ c and b ≥ d
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with one of the two above inequalities holding strictly. (Reversing the
above inequalities gives the condition for dominance by strategy 2.)

(b) Bistability : strategies 1 and 2 are bistable if they are each asymptoti-
cally stable:

a > c and b < d.

In this case, the population state x∗ ∈ int(S1) given by (4.15) is an
unstable interior stationary state.

(c) Coexistence: strategies 1 and 2 coexist if there is a global asymptoti-
cally stable interior state, given by x∗ from (4.15). This occurs if:

a < c and b > d.

(d) Neutrality : strategies 1 and 2 are neutral if the dynamics is uniformly
stationary on S1, which occurs if:

a = c and b = d.

�

Recalling the definition of ESS by Proposition 2.2, it is clear that a domi-
nant strategy in the replicator equation (4.14) is a pure-strategy ESS of the
underlying game, and that a stable state of coexistence corresponds to a
mixed-strategy ESS. Proposition 4.3 thus proves that the converse of Theo-
rem 4.1 holds for the two-strategy replicator equation: a population state is
asymptotically stable if and only if the corresponding (pure or mixed) strat-
egy is an ESS of the underlying game. The unfortunate implication of this
result is that the two-strategy replicator equation does not refine our notion
of game-theoretic equilibrium beyond the static ESS. However, we can also
use this to our advantage, under certain circumstances, by reducing complex
multi-strategy dynamics to simple pairwise interactions on the edges of the
population simplex (to be discussed further in §4.4.3).

4.4.2 The Viability Equation

We now analyze viability updating for a generic two-strategy underlying
game (4.13). We once again let x1 = x and x2 = 1− x, so that the viability
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dynamics (4.12) reduces to:

ẋ = (1− x)
z∑

z1=0

B(z1; z, x)p2(z1)
z1

z
− x

z∑
z1=0

B(z1; z, x)p1(z1)
z − z1

z
(4.16)

where pi(·) is given by (4.9), and the multinomial distribution (4.8) is reduced
to the binomial distribution B(z1; z, x)28 since we now sample from just two
population strategies.

As in any game dynamics, the pure population states x = 0 and x = 1
are stationary in (4.16). Ohtsuki (2008) shows that, in the weak selection
limit ω → 0, ẋ is of a cubic form, similar to (4.14). However, this is not the
case for all selection strengths. For general selection strength we can analyze
the behavior of the viability equation (4.16) only in terms of invasion con-
ditions of Proposition 4.2, which we now derive in terms of the underlying
game payoffs (4.13).

Assuming one strategy as invader and the other as incumbent, we can signif-
icantly simplify the viability equation (4.16). For instance, suppose we begin
at a state x = 1−ε, for some small population share of invaders ε > 0. Then
the binomial sampling distribution becomes:

B(z1; z, 1− ε) ≈


1− zε if z1 = z

zε if z1 = z − 1

0 otherwise.

(4.17)

This mathematical approximation translates to the fact that, for small enough
proportions of invaders in the population, there is almost zero chance of hav-
ing more than one invader in a random z-group.

We use (4.17) to simplify (4.16):

ẋ = ε(p2(z)− p1(z − 1))

= εγ(e−ω(zc) − e−ω((z−1)a+b)).

This tells us that, if strategy 1 is invaded, ẋ ≥ 0 ⇔ zc ≤ (z − 1)a + b. By
symmetry, if strategy 2 is invaded, we have ẋ ≥ 0 ⇐⇒ zb ≤ c + (z − 1)d.

28The binomial distribution is given by: B(z1; z, x) =
(
z
z1

)
xz1(1− x)(z−z1).
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Thus, we have derived the following conditions for evolutionary behavior, in
the terms of Proposition 4.2.

Proposition 4.4. We here fully classify the stable outcomes of a two-strategy
viability updating dynamics (4.16), conditional on the payoffs of the under-
lying game (4.13).

(a) Dominance: strategy 1 dominates if

(z − 1)a+ b ≥ zc and zb ≥ c+ (z − 1)d

with one of the two inequalities holding strictly. (Reversing the above
inequalities gives the condition for dominance by strategy 2.)

(b) Bistability : strategies 1 and 2 are bistable if

(z − 1)a+ b > zc and zb < c+ (z − 1)d.

(c) Coexistence: strategies 1 and 2 coexist if

(z − 1)a+ b < zc and zb > c+ (z − 1)d.

(d) Neutrality : strategies 1 and 2 are neutral if

(z − 1)a+ b = zc and zb = c+ (z − 1)d.

�

Each invasion condition above comes from one of two critical comparisons:
the average payoff of strategy 1 in a z-group with one invader versus the
payoff of the invader, ((z − 1)a + b)/z versus c, and likewise for strategy 2
being invaded by strategy 1, (c+(z−1)d)/z versus b. This is indeed what we
might expect, given our approximation (4.17) that there is zero probability
of having more than one invader in a z-group.

Another interesting observation is that the conditions in Propositions 4.3
and 4.4 are equivalent in the large-z limit of the viability model. In other
words, as the size of the viability model’s interaction groups approaches the
entire population, the pairwise invasion conditions match those of the repli-
cator equation. This result highlights the importance of local structure in
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viability updating, as distinguished from the global selection mechanism of
the replicator dynamics.

We now present a two-strategy example game which, as alluded to in §4.3,
proves by counterexample that the viability model is not a weakly payoff
positive game dynamics. Recalling the Folk Theorem 3.1, a weakly payoff
positive game dynamics guarantees that any dynamically stable state is a
Nash equilibrium of the underlying game. Thus, we seek to find game with
a non-Nash strategy that is stable under viability updating.

Figure 1: A visualization of bifurcation in the viability dynamics of Example
4.1. Here we denote xDN = x and xDP = 1− x, so that the rate of change of
DN in population state x is given by ẋ.

Example 4.1. We begin along the lines of Example 2.2, in which a Prisoner’s
Dilemma game is followed by a punishment round, allowing a player to incur
a cost α > 0 to harm an opponent by β > 0. We now consider a game
between DP, a non-harming defector, and DP, a defector who punishes other
defectors. This gives the payoff matrix:

(DN DP

DN 0 −β
DP −α −α− β

)
.

Thus DN is the unique Nash equilibrium, and furthermore DN strictly dom-
inates DP in rational game-play. Proposition 4.3 tells us that the replicator
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equation respects these dominance relations, and thus DN is always domi-
nant in the two-strategy dynamics. However, Proposition 4.4 gives us a very
different result for the viability equation: DN dominates DP only if β < zα;
if β > zα, DP dominates DN (see Figure 1).This proves that viability up-
dating need not respect the dominance relations of the underlying game, and
thus is not a weakly payoff positive game dynamics. �

4.4.3 Nash and ESS Analogues

The preceding method of pairwise dynamical analysis can be used to classify
the edge dynamics of any n-strategy system. If there are no interior station-
ary states in a game dynamics, then it is natural to next search the boundary
of the simplex.29 If there are no stable states on the interiors of each bound-
ary face, then we can discuss long-run evolutionary behavior solely in terms
of the edges of the simplex.

Recalling from Proposition 3.2 that the simplex vertices are always station-
ary, we can now test the stability of each stationary vertex. And evolutionary
intuition justifies pairwise stability analysis: unless mutation is rampant, we
can assume that any mutant strategy both arises and succeeds/fails to invade
a population before the next mutation arises. In this case, we can define a
meaningful edge-dynamical analogue of the pure-strategy Nash equilibrium:

Definition. A pure strategy is uninvadeable in the edge dynamics if it is not
dominated by any other pure strategy – namely, it is dominant over, bistable
with, or neutral with any other pure strategy.

Similarly, we can define analogues of the strict Nash equilibrium (uninvade-
able with no neutralities) and of the ESS (uninvadeable, and able to invade
any strategy that is a neutral invader). However, for the purposes of our anal-
ysis in §5, we will not need to invoke these stronger forms of edge equilibrium.

It is an easy exercise to verify that a pure strategy is Nash if and only if
it is uninvadeable in the replicator dynamics (or, more generally, in any
monotonic game dynamics (3.6)). But this equivalence does not hold in gen-
eral, for instance under the viability equation, whose dynamics are not so

29There can still be oscillation or chaotic motion in the simplex interior, but, as men-
tioned in §3.1, we are interested in stable stationary states as long-run evolutionary out-
comes, rather than in specific solution trajectories.
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clearly correlated with rational strategic game-play. Thus, in our classifica-
tion of edge dynamics, we have introduced a notion of dynamical equilibrium
very different from the stationary states discussed in §3.2 – although the two
forms of equilibrium can work together, as we will witness in the following
section.
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5 Cooperation with Costly Punishment

This section presents the original research of David G. Rand, Mayuko Naka-
maru, Hisashi Ohtsuki, and myself, in response to recent results (both theo-
retical and experimental) supporting the punishment of defectors as a means
of fostering the evolution of cooperation (Hauert et al., 2007; Nakamaru and
Iwasa, 2006, 2005; Fowler, 2005; Bowles and Gintis, 2004; Fehr et al., 2003;
Boyd et al., 2003; Sigmund et al., 2001). However, experiments have also
shown that there is in some cases a tendency to punish cooperators as well
(Denant-Boemont et al., 2007; Nikiforakis, 2008). Thus, we here study an
evolutionary game which broadens the scope of punishment to include the
“antisocial” harming of cooperators, as well as the “spiteful” harming of all
opponents indiscriminately.30 Our static game analysis immediately justifies
antisociality as a classically rational strategy, and our replicator dynamics
analysis validates antisocial defection in an evolutionary context. Finally,
our viability updating analysis allows for direct comparison with the results
of Nakamaru and Iwasa (2006), and we again find that the harming of coop-
erators impedes the evolution of cooperation.

5.1 Game-Theoretic Analysis

We set up our game in the same manner as Examples 2.2 and 4.1: a one-
round Prisoner’s Dilemma – in which a player can cooperate (C) or defect
(D) – is followed by a punishment round, in which each player can harm
defectors (P, punishment), harm cooperators (A, antisociality), harm both
(S, spite), or harm neither (N). This makes for eight possible deterministic
strategies, given the three independent choices of whether or not to coop-
erate, whether or not to harm a cooperator, and whether or not to harm a
defector. Of these eight strategies, four are “illogical” in the sense that they
harm their own kind: DP, DS, CA, and CS. The remaining four are then
“logical”: DN, DA, CN, and CP.

30The terminology of past literature poses a slight problem when we generalize the
strategy set. The term “punishment” specifically refers to the harming of defectors, but
we will also use it as the general term for harm, whenever a phrase (such as “Cooperation
with Costly Punishment,” or “the punishment round”) has been well-established in past
literature that only considered harming defectors. The meaning is intended to be clear
from context.
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The payoffs to the Prisoner’s Dilemma are given by the standard payoff ma-
trix (1.1), whereby a cooperator pays a cost c to give an opponent a benefit
b > c > 0. The payoffs to the punishment round, in which a player can incur
a cost α > 0 to decrease an opponent’s payoff by β > 0, are then added to
the first-round payoffs. Thus total game payoffs are given by the 8×8 payoff
matrix (B.1) in Appendix B.

5.1.1 Nash Equilibria and ESS

We employ the fundamental evolutionary assumption that players’ strategies
are inherent (or otherwise fixed), and only altered through reproduction (or
imitative updating). In light of this fact, and because weak Nash equilibria
are invadeable in an evolutionary context, we are primarily concerned with
pure-strategy Nash equilibria. Mixed-strategy ESS’s, on the other hand, are
of interest, for they can be interpreted as stable states in an evolving popu-
lation.

Recalling the criterion (2.5) for symmetric Nash equilibria, we see from pay-
off matrix (B.1) that DN and DA are always Nash strategies, and that CP is
Nash if β > c. This shows immediately that antisocial defection is a rational
strategy in the game, thereby validating our intuition to expand the game’s
strategy space to include the harming of cooperators.

It is easy to see that these are the only three symmetric pure-strategy Nash
equilibria, and so we now search the game for possible ESS’s. Recalling
Proposition 2.5, an ESS cannot contain any Nash strategies in its support.
Thus, there cannot be any ESS in the interior of the simplex S8, since we
have pure-strategy Nash equilibria. Also, observe that our three Nash strate-
gies can only be weak Nash equilibria, and not ESS’s: DN and DA, as well
as CN and CP, constitute neutral strategy pairs, and neutral strategies are
not robust to mutual invasion (cf. ESS definition by Proposition 2.2).31

Next, observe that the indiscriminate harmers, DS and CS, are strictly dom-
inated by DN and CN (resp.) by definition (2.6). Proposition 2.1 then tells
us that neither DS nor CS can appear in the support of any Nash equilibrium
– hence of any ESS, by Proposition 2.3. Also, the illogical punishers, DP and

31DP-DS and CA-CS also constitute somewhat less noteworthy neutral strategy pairs.

55



CA, are weakly dominated by DN and CN (resp.), and thus cannot appear
in the support of any ESS by Proposition 2.4.

Thus, we have narrowed any potential ESS to a single strategy: CN, the
non-punishing cooperator. But CN is always invaded by DN, and therefore
there is no ESS in our game. We now move from this static analysis to
the evolutionary dynamics, which will perhaps reveal some invasion-robust
equilibrium that our static game analysis did not reveal.

5.2 Replicator Dynamics Analysis

Here we analyze the replicator dynamics (4.5) for our underlying 8-strategy
cooperation and punishment game, with payoff matrix A = (B.1).

5.2.1 Dynamical Equilibria

Before any explicit computation, we can predict much of the behavior of the
replicator dynamics from our static analysis of last section, as well as the
theoretical results of §3 and §4. Recall that the Folk Theorem offers us three
dynamical refinements of the Nash equilibrium: interior stationary states,
stable states, and Ω-limits of interior states. From Theorem 3.2, the popula-
tion shares xDS and xCS must always converge to zero, since DS and CS are
strictly dominated in rational game-play, so immediately we know that there
can be no interior stationary states. By Proposition 3.4, this also implies
that if the Ω-limit of an interior state is a single limit point, the limit point
lies on the boundary of the simplex. Thus, the replicator dynamics can only
yield boundary equilibria for our game.

Recall that Proposition 3.6 gives the stationary states of any monotonic
game dynamics, such as the replicator dynamics:

S◦n = {x ∈ Sn | ei · Ax = x · Ax, ∀ei ∈ S(x)}.

As noted after the proof of this proposition in §3.3, S◦n can be explicitly com-
puted by solving finitely many systems of linear equations. In particular, we
seek non-edge stationary states (i.e. population states involving more than
two pure strategies), since the edge dynamics are described in much greater
detail by Proposition 4.3, which we will invoke in the next section. Thus, we
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compute the non-edge stationary states of our system.32 As expected, none
lie in the interior of the population simplex:

If β > α + 2c:

(1) xDP = 1
4

+ α+2c
4β

, xDA = 1
4
− α+2c

4β
, xCS = 1

2
.

(2) xCP = 1
4

+ α+2c
4β

, xCA = 1
4
− α+2c

4β
, xDN = 1

2
.

If β > |α− 2c|:

(3) xDP = 1
4
− α−2c

4β
, xDA = 1

4
+ α−2c

4β
, xCN = 1

2
.

(4) xCP = 1
4
− α−2c

4β
, xCA = 1

4
+ α−2c

4β
, xDS = 1

2
.

A stationary parameterized curve exists for x ∈
[
c

2β
, 1

2

]
, if β > c:33

(5) xCP = x, xCA = 1
2
− x, xDP = 1

2
− x+ c

2β
, xDA = x− c

2β
.

We evaluate the stability of the stationary states (1)-(5) by the eigenvalue
method discussed in §3.2.2. Since the Jacobian J (x) of our system is an
8× 8 matrix, the roots of its 8th-degree characteristic polynomial cannot be
solved analytically. Thus, for each stationary state x we evaluate J (x) across
100,000 random sets of parameter values b, c, α, and β,34 and use Matlab to
compute numerical eigenvalues. We find that all stationary states (1)-(4), as
well as all points on the stationary curve (5),35 have at least one eigenvalue
with positive real part for every tested parameter set. Therefore, we conclude
that all non-edge equilibria of our game are unstable for reasonable parameter
values, and we restrict further analysis to the dynamics of the simplex edges,
as justified in §4.4.3.

32Matlab code and other computations available on request.
33By “stationary parameterized curve,” we simply mean a parameterized curve γ :

[ c2β ,
1
2 ]→ Sn, with γ(x) stationary in the replicator dynamics for any x ∈ [ c2β ,

1
2 ].

34Each random parameter set was generated by choosing a random uniform value for
each parameter on the interval [0, 20], with the sole constraint that b > c, in accordance
with Prisoner’s Dilemma payoffs.

35For each parameter set, 1,000 random states on the curve were chosen for numeric
stability evaluation.

57



5.2.2 Edge Dynamics

We can explicitly compute all pairwise replicator dynamics using Proposition
4.3, which specifies not only the invasion conditions for each strategy pair,
but also the full dynamics along each simplex edge. We thus compute the
following equilibria:36

(1) Stationarity along the neutral DN-DA edge.

(2) Stationarity along the neutral CN-CP edge.

(3) Stationarity along the neutral DP-DS edge.

(4) Stationarity along the neutral CA-CS edge.

If β > c (harm is effective):

(5) Bistability between DN and CP, with unstable stationary state:
xDN = β−c

α+β
, xCP = 1− β−c

α+β
.

(6) Coexistence between DP and CS.

If α > c (harm is expensive):

(7) Bistability between DA and CN.

(8) Bistability between DS and CA.

If α + β > c (harm is expensive and/or effective):

(9) Bistability between DA and CP, with unstable stationary state:
xDA = 1

2
α+β−c
α+β

, xCP = 1− 1
2
α+β−c
α+β

.

(10) Bistability between DS and CP.

(11) Coexistence between DP and CN.

(12) Coexistence between DP and CA.

36For the sake of brevity here, we only state the specific location of an equilibrium in
two special cases, which are of particular interest.
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The remaining edges exhibit dominance relations, rather than dynamical
equilibria. In Figure 2 (see Appendix B.2) we summarize the complete edge
dynamics, including the equilibria (1)-(12) and the remaining edges. The
edge dynamics change across parameter space, based on the inequality con-
ditions in (1)-(12) above, and thus Figure 2 depicts the edge dynamics for
the resulting five different parameter regions.

Figure 2 corroborates the observation in §4.4.3 that any Nash equilibrium
in the underlying game is uninvadeable in the replicator edge dynamics: DN
and DA are uninvadeable in all parameter regions, and CP is uninvadeable
whenever β > c. Since there is no ESS in the underlying game, there is never
a dominant strategy in the edge dynamics. Nonetheless, the logical defectors
DN and DA form asymptotically stable edge, in the sense that any other
invading strategy is eliminated anywhere along the DN-DA edge. CP is also
uninvadeable, yet vulnerable by way of its neutrality with CN, which can
always be invaded by DN. In the presence of mutation, neutral drift along
the CN-CP edge makes the demise of cooperation inevitable, even when CP
is itself uninvadeable. Thus, evolution will always lead to “logical defection,”
with a randomly drifting combination of non-harming defectors and antiso-
cial defectors.

To distinguish the evolutionary success of DN and DA, we compare their
relative basins of attraction with respect to the stable CP vertex – in other
words, we look at the location of the unstable coexistences (5) and (9) above.
When β > α+c, the unstable DA-CP equilibrium is further from DA than the
unstable DN-CP equilibrium is from DN. This results in DA having a larger
basin of attraction than DN when playing against CP. Also, the DA-CP equi-
librium is never closer to DA than DA = 1

2
, while the DN-CP equilibrium

can go all the way to DN = 1, in which case CP dominates DN. Both of
these facts show that if inflicting harm is inexpensive, DA can in some sense
outperform DN against CP.

Thus, we have shown that the replicator dynamics leads to the evolution of
antisocial defection, strengthening the result achieved by the Nash and ESS
analysis of the static game. The replicator dynamics also offers further in-
sight in showing that antisocial defectors often fare better than non-harming
defectors against punishing cooperators.
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5.3 Viability Updating Analysis

Nakamaru and Iwasa (2006) considers a game between DN, DP, CN, and
CP, and shows that the CN-CP edge is stable under the viability updating
dynamics (4.12). We now investigate whether this result holds in the more
general 8-strategy game.

5.3.1 Weak Selection Equilibria

Finding analytical solutions for the viability model for general selection
strength ω is problematic.37 Thus, we relegate ourselves to the weak se-
lection limit ω → 0 (cf. (4.3)), which simplifies the viability differential
equations to a more manageable form:38

ẋi = xi(ei · [zA− AT ]x− x · [zA− AT ]x) (5.1)

where A (with transpose AT ) is the payoff matrix of the underlying game.
Note that (5.1) is equivalent to the replicator dynamics under the change of
payoff matrix A→ zA−AT , which represents a change in fitness in the repli-
cator equations (4.4). Thus, weak selection viability updating can be thought
of as replicator dynamics up to a change in fitness: “replicator fitness” is an
individual’s expected payoff from playing a random opponent; “viability fit-
ness” under weak selection is the difference between an individual’s total
expected payoff from playing z random opponents, and the expected payoff
a single random opponent receives against the individual. Consequently, vi-
ability updating rewards strategies that lower opponents’ payoffs – thereby
foreshadowing the evolution of costly punishment.

It is interesting to note that, just as was the case with the invasion condi-
tions in Propositions 4.3 and 4.4,cthe replicator and weak-selection viability
equations are equivalent in the large z limit. This once again highlights the
importance of finite interaction groups in z-mixed viability updating.

Now, we can once again use Proposition 3.6 to compute the set of stationary
states S◦n of our system – only, this time we use zA−AT as our payoff matrix,

37In fact, in our research efforts, we have not even succeeded as yet in running simula-
tions by numerical integration, for the 8-strategy viability equations demand an excess of
computing power.

38See Appendix C for derivation.
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to obtain stationary states for weak-selection viability updating. We find the
following non-edge equilibria:

If β > α
z
, 2 b+zc

z+1
+ α:

(1) xDP = 1
4

(z−1)(β+α)+2(b+zc)
zβ−α , xDA = 1

4
(z+1)(β−α)−2(b+zc)

zβ−α , xCS = 1
2
.

(2) xCP = 1
4

(z−1)(β+α)+2(b+zc)
zβ−α , xCA = 1

4
(z+1)(β−α)−2(b+zc)

zβ−α , xDN = 1
2
.

If β > α
z
, α− 2 b+zc

z+1
, 2 b+zc

z−1
− α or β < α

z
, α− 2 b+zc

z+1
, 2 b+zc

z−1
− α:

(3) xDP = 1
4

(z+1)(β−α)+2(b+zc)
zβ−α , xDA = 1

4
(z−1)(β+α)−2(b+zc)

zβ−α , xCN = 1
2
.

(4) xCP = 1
4

(z+1)(β−α)+2(b+zc)
zβ−α , xCA = 1

4
(z−1)(β+α)−2(b+zc)

zβ−α , xDS = 1
2
.

A stationary parameterized curve exists for x ∈
[

1
2
b+zc
zβ−α ,

1
2

]
, if β > α+(b+zc)

z
:

(5) xCP = x, xCA = 1
2
− x, xDP = 1

2
− x+ 1

2
b+zc
zβ−α , xDA = x− 1

2
b+zc
zβ−α .

To evaluate the stability of equilibria (1)-(5), we once again numerically
compute the eigenvalues of our system’s 8× 8 Jacobian, for 100,000 random
parameter sets. As was the case with the replicator dynamics, we find that
all non-edge equilibria have at least one eigenvalue with positive real part.
Therefore, all interior equilibria are unstable for reasonable parameter values,
and we restrict further analysis to the edge dynamics.

5.3.2 Edge Dynamics

We now analyze the viability edge dynamics by computing all pairwise in-
vasion conditions, as given by Proposition 4.4. Recall that for the viability
model, we cannot specify the exact dynamics along each edge – as we could
for the replicator dynamics – since the two-strategy viability equation (4.16)
is not of a “nice” polynomial form. We compute the pairwise equilibria:

(1) Neutrality between DN and DA.

(2) Neutrality between CN and CP.

(3) Neutrality between DP and DS.
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(4) Neutrality between CA and CS.

If β ∈
(
α+b
z

+ c, z(c+ α) + b
)
:

(5) Bistability between DN and CP.

(6) Coexistence between DP and CS.

If β ∈
(
α−b
z
− c, z(α− c)− b

)
:

(7) Bistability between DA and CN.

(8) Bistability between DS and CA.

If β > b+zc
z−1
− α:

(9) Bistability between DA and CP.

(10) Bistability between DS and CP.

(11) Coexistence between DP and CN.

(12) Coexistence between DP and CA.

The remaining edges exhibit dominance relations, rather than dynamical
equilibria. In Figure 3 we summarize the invadeability conditions on all
edges of the population simplex, including the equilibria (1)-(12) and all
other edges. We end up with 12 different parameter regions, and we can
compare our results directly with the findings of Nakamaru and Iwasa (2006)
by setting α = c = 1 and z = 4.

With these values assumed for α, c, and z, the only feasible parameter re-
gions (i.e. regions in which b, β > 0) are the regions which we have labeled
1-7 in Figure 3, in accordance with Nakamaru and Iwasa (2006). Our re-
sults within each region are extremely different from those of Nakamaru and
Iwasa (2006): in Regions 3, 4, and 5, Nakamaru and Iwasa find that CP
is the only uninvadeable strategy, whereas we find that DS is the only un-
invadeable strategy. We find a relatively small portion of parameter space
(regions 6 and 8) in which CP is uninvadeable, but nowhere is CP the unique
uninvadeable strategy.
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Moreover, in every region save region 12 (where DN is the unique unin-
vadeable strategy), either DA or DS is uninvadeable, so that defectors who
harm cooperators are almost always evolutionarily stable. And even when
CP is uninvadeable, it is nevertheless neutral with the perpetually invade-
able strategy CN, so that the edge of logical cooperators is always unstable.
Thus, in the presence of mutation, CP cannot be stably maintained by a
population in the long-run.

5.4 Discussion of Results

Thus, using static game analysis as well as two models for evolutionary dy-
namics, we have shown that the possibility of harming cooperators dramati-
cally changes the outcomes of evolution. Our initial game-theoretic analysis
supports antisocial defection as a rational strategy, in the traditional sense.
The replicator dynamics suggests that the only sustainable long-run evolu-
tionary outcome involves some combination of non-harming defectors and
antisocial defectors. Moreover, in the replicator dynamics antisocial defec-
tors fare better than non-harming defectors against their most formidable
opponent, punishing cooperators, thus further supporting antisocial defec-
tion in an evolutionary context.

The results of our 8-strategy viability updating are very different from Naka-
maru and Iwasa’s 4-strategy results, as we find that various forms of defection
always prevail in the evolutionary long-run. Most surprisingly, the strategy
of spiteful defection – which is both “irrational,” as a strictly dominated
strategy, and “illogical,” as a strategy that harms its own kind – is found to
be long-run stable when the effect of harm is severe. This counterintuitive
outcome can be attributed to the finite interaction groups of viability up-
dating: a strategy that reduces others’ fitness increases opponents’ chance
of strategic update, and is thereby more likely to spread in small interaction
groups (Hofbauer and Sigmund, 1998; Nakamaru and Iwasa, 2006).

Thus, we have achieved interesting results by expanding the strategy space of
recent evolutionary models, and by applying the analytical methods of §2-4.
Our analysis can be further developed by the consideration of different evolu-
tionary dynamics, perhaps ones that involve spatially-structured populations
or other forms of agent-based interactions in finite populations. While we
have hopefully shed some light on the merits and drawbacks of costly pun-
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ishment in a cooperation game, more can always be said, and new questions
ever arise, in the quest to understand the evolution of cooperation.
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6 Conclusion

In §2.1 we introduced the key notions from static game theory, in particular
the Nash equilibrium and its chief evolutionary refinement, the ESS.

In §3 we developed the rudiments of evolutionary dynamics for continuum
populations. We proved necessary conditions for a game dynamics to exhibit
dynamical refinements of the Nash equilibrium, and to ensure the evolution-
ary elimination of irrational strategies. We witnessed in §4 two specific dy-
namical models which aptly demonstrate the advantages and disadvantages
of a game dynamics firmly rooted in rational game-play. We also introduced
a key method of analyzing the edge dynamics of a system when there are no
interior stationary states.

§5 presented the central motivating problem, which served as both a worth-
while original evolutionary analysis and an extended application of the static
and dynamic theories earlier developed. Our analysis yielded interesting re-
sults that challenge the use of costly punishment as a means of inducing the
evolution of cooperation.

We thus conclude our study, and hope that the reader is encouraged to
further explore the ever-growing field of evolutionary game dynamics.
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Appendix

A Normal-Form Games and Nash Existence

Much of the initial complexity of general normal-form game theory, as com-
pared with the symmetric two-player game theory presented in §2.1, derives
from the complex notation needed to keep track of an arbitrary number of
asymmetric strategy spaces and payoff functions. The introduction of general
game theory is omitted from the main text because it offers us no immedi-
ate insight that is not already provided by the theory of symmetric games.
However, the ensuing discussion is of interest to the reader who seeks to un-
derstand the rudiments of strategic interactions and Nash equilibria in their
purest form – which might perhaps serve to better motivate the development
of evolutionary theory in the body of the paper. Also, note that this appendix
is intended to be read after §2.1, and thus we here omit the explanation of
certain concepts that have already been elucidated by the introduction of
symmetric game theory.

First recall that a normal-form game G = (m, {Si}, {πi}) is defined by m
players, each with pure strategy space Si and payoff function πi : ×mi=1Si → R,
where ×mi=1Si is the space of all pure strategy profiles s = (s1, . . . , sm).

Player i employs a mixed strategy σi by playing each pure strategy si ∈ Si
with fixed probability σi(si). We define, once again, the support of a mixed
strategy as the set of pure strategies with nonzero probability weights:

S(σi) = {si ∈ Si | σi(si) > 0}.

Each player possesses a (possibly unique) mixed strategy space Σi ⊃ Si, so
that the space of all strategy profiles – the potential strategic states of the
game – is the product space Σ = ×mi=1Σ

i ⊃ ×mi=1Si. As a matter of notation,
we say that a strategy profile σ = (σ1, . . . , σm) ∈ Σ can be decomposed
into σi (player i’s strategy) and σ−i (all other players’ strategies). Player i’s
payoff to a mixed strategy profile σ ∈ Σ is given by the probabilistic sum of
payoffs over all pure strategy profiles:

ui(σ) ≡
∑
s∈S

Pr(s)πi(s) =
∑
s∈S

(
m∏
j=1

σj(sj)

)
πi(s). (A.1)
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The following proposition gives two important properties of the payoff func-
tion that we will employ in the ensuing discussion of the Nash equilibrium.
The proposition follows immediately from (A.1), which is a generalization of
the bilinearity of the two-player symmetric payoff function defined in §2.1.

Proposition A.1. Player i’s payoff ui(σ) is linear in the probabilities σi(si)
he assigns to the pure strategies si ∈ Si, and hence linear in player i’s mixed
strategy σi ∈ Σi itself.

We now define the notions of best reply and Nash equilibrium on their broad-
est terms.

Definition. Given a strategy profile σ ∈ Σ, player i’s best-reply βi is given
by

βi(σ) = {σ̂i ∈ Σi | ui(σ̂i, σ−i) ≥ ui(s
i, σ−i), ∀si ∈ Si}. (A.2)

Once again, there are possibly multiple best-replies to a given strategy profile,
and thus player i’s best reply is a set-valued function βi : Σ→ P(Σi).

We can now define a global best-reply function β : Σ→ P(Σ), given by the
cartesian product of individual best-reply functions, β(σ) = ×mi=1βi(σ).

Definition. A strategy profile σ ∈ Σ is a Nash equilibrium if σ ∈ β(σ), i.e.
if for all players i,

ui(σ
i, σ−i) ≥ ui(s

i, σ−i) ∀si ∈ Si. (A.3)

The Nash equilibrium is strict if the global best reply is a singleton, β(σ) =
{σ}, i.e. if (A.3) holds strictly.

Again, a Nash equilibrium is simply a strategic state of the game from which
no player can profitably deviate. The famous Nash Existence Theorem guar-
antees that every finite normal-form game has a Nash equilibrium (Nash,
1951). This is an important nuance of the theorem: a game is considered
finite if each player’s pure strategy space is finite. Letting |Si| = ni, player
i’s mixed-strategy space Σi becomes the space of all probability weightings
across ni pure strategies; namely, Σi is isomorphic to the (ni−1)-dimensional
simplex Sni ⊂ Rni .

Recall from §2.1 the statement of Kakutani’s theorem, which is central to
the Nash existence theorem:
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Theorem (Kakutani Fixed Point Theorem). Let S be a nonempty, convex,
and compact subset of a Euclidean space, and β : S → P(S) a set-valued
function. If β has convex nonempty images and a closed graph, then it has
a fixed point x ∈ β(x).

We are now equipped to prove the most general version of Nash’s theorem.

Theorem (Nash Existence Theorem). Every finite normal-form game has a
Nash equilibrium.

Proof. By definition (A.3), a fixed point of a game’s global best reply function
β : Σ → P(Σ) is a Nash equilibrium of the game. Thus it suffices to show
that for a finite game, β satisfies the conditions of Kakutani’s theorem.

(1) The domain of β is a nonempty, convex, and compact subset of a Eu-
clidean space.
Clearly, the simplex Sni is a nonempty, convex, and compact (closed
and bounded) subset of the Euclidean space Rni . Thus the domain of
β is (via isomorphism) a nonempty, convex, and compact subset of a
Euclidean space, as required: Σ ' ×mi=1Sni ⊂ ×mi=1Rni .

(2) β(σ) is nonempty, ∀σ ∈ Σ.
By Proposition A.1, player i’s payoff ui(σ

i, σ−i) is a linear (hence con-
tinuous) function of his strategy σi ∈ Σi ' Sni . Since ui is continuous
on the compact set Σi, it attains a maximum for some σ̂i ∈ Σi. It then
follows from the definition of best reply (A.2) that, for any given σ ∈ Σ,
there exists some σ̂i ∈ βi(σ), for each i. Then σ̂ = (σ̂1, . . . , σ̂m) ∈
β(σ).

(3) β(σ) is convex, ∀σ ∈ Σ.
For a given σ ∈ Σ, let σi1, . . . , σ

i
k ∈ βi(σ) be best replies for player i;

that is to say, for all j ∈ {1, . . . , k}, ui(σij, σ−i) = λ is the maximal
payoff that player i can achieve against σ−i. Then, any convex com-
bination α1, . . . , αk of best replies is also a best reply, by Proposition
A.1: ui(

∑k
j=1 αjσ

i
j, σ
−i) =

∑
j αjui(σ

i
j, σ
−i) =

∑
j αjλ = λ. Thus each

βi(σ) is convex in Σi, so the image β(σ) is convex in the product space
Σ.

(4) β has a closed graph.
Recall that β has a closed graph if: ({σα}, {σ̂α})→ (σ, σ̂), with σ̂α ∈
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β(σα) ⇒ σ̂ ∈ β(σ). We prove by contradiction that β has a closed
graph using the following “three-epsilon” argument. Suppose that
({σα}, {σ̂α}) → (σ, σ̂) but that σ̂ /∈ β(σ). Then σ̂i /∈ βi(σ) for
some player i, so that there exists an ε > 0 and a σ̄i ∈ Σi such
that ui(σ̄

i, σ−i) > ui(σ̂
i, σ−i) + 3ε. Since ui(σ) is continuous in σ

by Proposition A.1, and ({σα}, {σ̂α}) → (σ, σ̂), we also have that
for α sufficiently large: ui(σ̄

i, σ−iα ) > ui(σ̄
i, σ−i) − ε, and ui(σ̂

i, σ−i) >
ui(σ̂

i
α, σ

−i
α )− ε. Combining all three inequalities:

ui(σ̄
i, σ−iα ) > ui(σ̄

i, σ−i)− ε > ui(σ̂
i, σ−i) + 2ε > ui(σ̂

i
α, σ

−i
α ) + ε

which contradicts the fact that σ̂iα ∈ βi(σα). Thus, it must be the case
that β has a closed graph.

Thus, by the Kakutani fixed point theorem, the global best-reply function of
any finite normal-form game has a fixed point σ ∈ β(σ), which constitutes
a Nash equilibrium of the game.

69



B
8
-S

tr
a
te

g
y

C
o
o
p

e
ra

ti
o
n

/
P

u
n
is

h
m

e
n
t

G
a
m

e

B
.1

P
a
y
o
ff

M
a
tr

ix

           D
N

D
P

D
A

D
S

C
N

C
P

C
A

C
S

D
N

0
−
β

0
−
β

b
b
−
β

b
b
−
β

D
P

−
α

−
α
−
β

−
α

−
α
−
β

b
b
−
β

b
b
−
β

D
A

0
−
β

0
−
β

b
−
α

b
−
α
−
β

b
−
α

b
−
α
−
β

D
S

−
α

−
α
−
β

−
α

−
α
−
β

b
−
α

b
−
α
−
β

b
−
α

b
−
α
−
β

C
N

−
c

−
c

−
c
−
β

−
c
−
β

−
c

+
b

−
c

+
b

−
c

+
b
−
β

−
c

+
b
−
β

C
P

−
c
−
α
−
c
−
α
−
c
−
α
−
β
−
c
−
α
−
β

−
c

+
b

−
c

+
b

−
c

+
b
−
β

−
c

+
b
−
β

C
A

−
c

−
c

−
c
−
β

−
c
−
β

−
c

+
b
−
α
−
c

+
b
−
α
−
c

+
b
−
α
−
β
−
c

+
b
−
α
−
β

C
S

−
c
−
α
−
c
−
α
−
c
−
α
−
β
−
c
−
α
−
β
−
c

+
b
−
α
−
c

+
b
−
α
−
c

+
b
−
α
−
β
−
c

+
b
−
α
−
β

           
(B

.1
)

70



B.2 Replicator and Viability Edge Dynamics

In the ensuing two figures: red arrows indicate one strategy dominating
another; black arrows indicate bistability; blue arrows indicate coexistence;
uninvadeable strategies are colored green.

Figure 2: Replicator dynamics on the simplex edges in each parameter region.
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C Viability Updating: Weak-Selection Limit

We here follow the derivation of Ohtsuki (2008) to obtain the weak-selection
viability expression (5.1). We begin by taking the weak selection limit ω → 0,
and substituting the resulting weak-selection fitness (4.3) into the general-
selection viability equations (4.12):

ẋi ≈
n∑
j=1

xj
∑
z

M(z; z,x)(1− ω(ej · Az))
zi
z

− xi
∑
z

M(z; z,x)(1− ω(ei · Az)).

The term of 0th-order in β vanishes, giving:

ω−1ẋi ≈ xi
∑
z

M(z; z,x)(ei · Az)−
∑
j

xj
∑
z

M(z; z,x)(ej · Az)
zi
z

= xi
∑
z

M(z; z,x)
∑
k

aikzk −
1

z

∑
j

xj
∑
z

M(z; z,x)
∑
k

ajkzkzi

= xi
∑
k

aikE[Zk]−
1

z

∑
j

xj
∑
k

ajkE[ZiZk] (C.1)

where Z = (Z1, . . . , Zn) ∼ M(z; z,x) is a multinomial random variable, and
E[·] the expectation function. It is a standard result from probability theory
that E[Zi] = zxi, and E[ZiZk] = zxi(δik + (z − 1)xk) (Rice, 2007), where δik
is the Kronecker delta function. Thus, (C.1) simplifies to:

= xi
∑
k

aikzxk −
1

z

∑
j

xj
∑
k

ajkzxi(δik + (z − 1)xk)

= xi

(
z
∑
k

aikxk −
∑
j,k

ajk(δikxj + (z − 1)xjxk)

)

= xi

(
z
∑
k

aikxk −
∑
j

xjaji − (z − 1)
∑
j,k

ajkxjxk

)
= xi(zei · Ax− ei · ATx− (z − 1)x · Ax)

= xi(ei · [zA− AT ]x− x · [zA− AT ]x). (C.2)

This gives us (5.1), up to a universal velocity factor of β−1.
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D Statement of Auxiliary Theorems

D.1 Picard-Lindelöf Theorem

Theorem. If ϕ : X → Rn is Lipschitz continuous on the open domain
X ⊂ Rn, then the system ẋ = ϕ(x) has a unique solution ξ(·,x) : T → X
through every state x ∈ X. Moreover, ξ is continuous in t ∈ T and in
x ∈ X.39

See Hirsch and Smale (1974) for proof.

D.2 Hartman Linearization Theorem

We must first establish the following two definitions before stating Hartman’s
theorem.

Definition. In a system of differential equations ẋ = f(x), a stationary state
y is hyperbolic if the Jacobian J of f evaluated at y has no eigenvalues with
zero real part.

Definition. Given a system of differential equations ẋ = f(x), a linearization
L of f at a point y is the system given by: ẋ = J (y) · x ≡ L(x).

Theorem. Let f : Rn → Rn be a smooth map. Let y be a hyperbolic sta-
tionary state of the system ẋ = f(x), and L a linearization of the system
at y. Then there exists a neighborhood U of y in which f is topologically
conjugate to L – namely, there is a homeomorphism h : U → Rn such that
h ◦ f ◦ h−1 = L.

See Hartman (1960) for proof.

39Note that this continuity result is often stated and proved separately.
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