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moonshine
2. a. (n.) Appearance without substance; something unsubstantial or unreal;

(now) esp. foolish or fanciful talk, ideas, plans, etc. Originally †moonshine
in the water. . . . 1887 Spectator 3 Sept. 1173 As for all this talk about
Federalism, it is moonshine. It means nothing practical at all.

2. (adj.) Vain, empty, foolish; worthless. rare. . . . 1668 H. MORE Divine
Dialogues I. III. xxvi. 471 They are weak, abortive, Moon-shine Conceptions.

-Oxford English Dictionary [20]
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Introduction

A starting point in the theory of moonshine is the 1979 paper of J. H. Conway and S. P.
Norton entitled “Monstrous Moonshine” [18]. It collects several seeming-coincidences about
how the then conjectural Monster group, along with other sporadic finite simple groups like
the Mathieu groups, relate to modular forms. The amazing fact was that these were not
coincidences, but the beginnings of an unexpected link between the representation theory of
finite groups and modular forms, a seemingly unrelated branch of number theory.

In the forty year since this original paper, many more connections between modular
forms and the Monster group, the Mathieu groups, and most of the other finite simple
sporadic groups have been discovered. They are collectively referred to as moonshine. The
connection between the Mathieu group M24 and Hecke eigenforms which is the focus of this
thesis was described by G. Mason in 1985 [17]. Significant progress was made in the 1990’s,
and R. Borcherds won a Fields medal in 1998 in part for his work in proving Conway and
Norton’s original conjectures. The proof opened up connections between number theory
and representation theory with mathematical physics. Moonshine acts a bridge allowing
knowledge about number theory or representation theory to illuminate aspects of the other
field, and to explain apparent coincidences. (For surveys, see [3] and [10]). But despite
being able to prove these connections, the central question remains unanswered: why do the
Monster group and its relatives have anything to do with modular forms?

1. The History of Monstrous Moonshine

A look at the outlines of monstrous moonshine will help motivate the rest of this thesis
which examines the aspects of moonshine relating to the Mathieu groups. The story, as
related in [3], begins with the three equalities

1 = 1

196884 = 196883 + 1(1)

21493760 = 21296876 + 196883 + 1

The numbers on the left of (1) come from the modular function j(z). It is a function
on the upper half plane z ∈ H = {z ∈ C : Im(z) > 0} that appears in complex analysis
and number theory as the prototypical example of a modular function, which is a function
that transforms “nicely” so that j(z) = j(z + 1) = j(−1/z). If we let q = e2πiz, then j(z) is
expressible as a q−series with integer coefficients

j(z) = q−1 + 744 + 196884q + 21493760q2 + . . .

The numbers on the right of (1) are associated to the Monster group. The Monster
group is the largest of 26 sporadic simple groups. All the other simple groups, groups with
only the one element subgroup and whole groups as normal subgroups, lie in infinite families
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6 INTRODUCTION

according to the classification of finite simple groups. The Monster contains

246 · 320 · 59 · 76 · 112 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

elements, a 54 digit number. Its existence is a non-trivial fact: when the original moonshine
conjectures were made, mathematicians suspected its existence, and had been able to work
out its character table, but could not prove it actually existed. They did know that the
dimensions of the smallest irreducible representations would be 1, 196883, and 21296876.

When J. McKay first noticed these relationships, other mathematicians were sure they
were simply coincidences, so the subsequent theory took on the name moonshine, after foolish
and empty ideas.1 McKay and Thompson suggested that the explanation for these equalities
should lie in the existence of an infinite dimensional graded representation V = ⊕

n∈Z
Vn of the

Monster group such that the series

Tg(z) =
∑
n

tr(g|Vn)qn

is an “interesting” function for each element g of the Monster group. Taking the identity
element, the traces are simply the dimensions of the graded piece Vn, which appeared to give
the coefficients of the q−expansion of the function j(z). If one only looked at the identity
element, each Vn could simply be copies of the trivial representation and still produce the
j function, so the condition that Tg(z) be interesting for other elements of the Monster
group is crucial. Conway and Norton [18] proposed that all of the Tg(z) are special types
of modular functions called Hauptmodul, of which j(z) is an example. A Hauptmodul for
a subgroup Γ ⊂ SL2(R) is an isomorphism Γ\H → C normalized so that its q−expansion
begins q−1 + O(1). More precisely, Conway and Norton conjectured the following, which
Borcherds proved:

Conjecture 0.1. There is an infinite dimensional graded representation ⊕
n∈Z

Vn of the

Monster group such that for any element g of the Monster group, the series Tg(z) is a
Hauptmodul for a genus 0 subgroup of SL2(R).

A. O. L. Atkin, P. Fong, and S. D Smith were able to prove the existence of such a rep-
resentation through computer calculations, but shed no light onto what this representation
actually was. Frenkel, Lepowsky, and Meurman managed to find an explicit construction of
a representation so that T1(z) = j(z), but it was not obvious that it satisfied the remaining
parts of the conjecture. Borcherds’ work showed that these two representations agreed.

2. The Mathieu Groups and Moonshine

In the mid 80’s, G. Mason attempted to understand understand monstrous moonshine by
looking for analogs of monstrous moonshine for smaller sporadic finite simple groups. The
Mathieu groups are the five smallest sporadic simple groups, and were known to Mathieu
and Frobenius in the 19th century. The largest of these 5, M24, contains 210 ·33 ·5 ·7 ·11 ·23 =
244823040 elements. It is denoted M24 because it arises as a permutation group for a 24
element set S.

1Moonshine also refers to whiskey, especially illegal whiskey, and there is alcohol in this story. When
A. Ogg noticed that the prime factors of the order of the Monster group are precisely those primes that
satisfy a condition in the theory of modular functions, he offered a bottle of Jack Daniels as a prize for an
explanation of this fact [14].
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Mason realized that just as elements of the Monster group correspond to Hauptmodul,
elements of M24 correspond to Hecke eigenforms, a special type of modular form [17]. A
building block for modular forms is the Dedekind η−function. To each element g ∈ M24 is
associated a product of η− functions fg based on how g acts on S.

More precisely, Mason proceeded as follows. For q = e2πiz, define the Dedekind η−function
by

η(z) := q
1
24

∞∏
n=1

(1− qn).

Now g ∈ M24 permutes the set S, and so one can define the cycle shape of g to be
1r(1)2r(2) . . . 24r(24) where g acts as a product of r(i) cycles of length i. Then define

fg(z) =
24∏
d=1

η(dz)r(d)

Furthermore, define the weight k(g) to be half of the number of cycles of g and the level
N(g) to be the product of the lengths of the longest and shortest cycles. The key observation
will be the following relation to modular forms.

Theorem 3.2. For each g ∈ M24, fg(z) is a cusp form and a Hecke eigenform, with
weight k(g), level N(g), and a quadratic nebentypus character. The character is trivial if
k(g) is even.

Furthermore, each of the products fg(z) has a q−expansion

fg(z) =
∞∑
n=1

γn(g)qn

where each of the γn is a class function on M24 taking on integral values. In fact, each of the
γn are virtual characters, see Theorem 3.7. Because each of the fg(z) is a Hecke eigenform,
the coefficients of the q−expansion are multiplicative so γn · γm = γnm for relatively prime
n and m. This interesting family of characters comes from an natural infinite dimensional
graded virtual representation, described in another paper by Mason [16], analogous to the
module for the Monster.

To describe it, let M be the standard 24−dimensional permutation representation of
M24. Let Λr(M) denote the rth exterior power of M . Represent a partition λ of n by
(λ1, λ2, . . . , λn) where λk is the number of times k appears in the partition. Being a partition
means that

∑n
k=1 kλk = n. Denote λ being a partition of n by λ C n. For example,

(1, 0, 1, 0)C 4, since 4 = 3 + 1. Define

σ(λ) := (−1)
Pn
k=1 λk

and define

Mλ :=
n⊗
k=1

Λλk(M).

We will see that these are the graded components of the virtual module.

Theorem 3.11. Let V be the infinite dimensional graded virtual module

V = ⊕Vn where Vn =
∑

λC (n−1)

σ(λ)Mλ.
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Then V explains the family of characters γn in the sense that for g ∈ M24

tr(g|Vn) = γn(g).

The bulk of this thesis will explain Mason’s results summarized above. It aims to be
accessible to anyone who has studied mathematics at an undergraduate level. The main
prerequisites which are not reviewed are basic group theory and complex analysis. Chapter
1 is devoted to reviewing the necessary representation theory, constructing the Mathieu
groups via Steiner systems, and understanding the representation theory of the Mathieu
groups, especially the conjugacy classes and permutation representation. Chapter 2 defines
modular forms and focuses on properties and examples of Hecke eigenforms. Chapter 3
deals with Mason’s results directly, proving Theorems 3.2 and 3.11 and illustrating how the
bridge of moonshine between representation theory and number theory can be used to better
understand both.



CHAPTER 1

Representation Theory of M24

The Mathieu groups M11, M12, M22, M23, and M24 are the simplest of the sporadic
finite simple groups. The goal of this section is to provide the background material from
representation theory, the construction of the Mathieu groups, and the relevant information
about the character table and conjugacy classes of M24 in preparation for a discussion of
moonshine.

1. Facts from Representation Theory

The motivating idea behind representation theory is to reduce the problem of under-
standing a group to that of understanding its image in a group of linear transformations of
a finite dimensional vector space. These can be understood using the techniques of linear
algebra and in turn can give group theoretic information. An excellent summary for basic
representation theory is Serre’s Linear Representations of Finite Groups [24].

1.1. Virtual Representations, Modules, and Characters. The only representa-
tions necessary here will be of the following type:

Definition 1.1. Let G be a finite group and V an n dimensional vector space over C.
A representation of G on V is a homomorphism ρ : G→ GL(V ).

Recall that this data is the same as making V a C[G] module.
The character of a representation is the trace of the homomorphism ρ. A representation

is irreducible if it has no non-trivial vector subspaces that are fixed under the action of G.
The character of an irreducible representation is said to be irreducible. The following basic
fact is proved in Serre [24]:

Proposition 1.2. Every representation splits into a direct sum of irreducible represen-
tations. In terms of C[G] modules, this means that every representation is semisimple.

The irreducible characters of G form an orthonormal basic for the the space of complex
valued class functions on G with the inner product

(f, f ′) :=
1

|G|
∑
g∈G

f(g)f ′(g)(2)

In addition to the basic theory of ordinary representations and characters, the theory of
moonshine requires a basic understanding of virtual representation and virtual characters, as
discussed in the appendix of Serre [24]. A virtual representation (or virtual module) is noth-
ing more than formal Z-linear combination of G−representations. They are elements of the
Grothendieck group for the category of finitely generated C[G] modules. The Grothendieck
group is an Abelian group generated by [M ] where M is a finitely generated C[G] module,
with the relation that [M2] = [M1] + [M3] for each short exact sequence

0→M1 →M2 →M3 → 0

9



10 1. REPRESENTATION THEORY OF M24

Since all C[G] modules are semi-simple, they split into direct sums of simple modules (irre-
ducible representations) and hence the Grothendieck group is precisely a free Abelian group
generated by the irreducible representations of G. The Grothendieck group can be made
into a ring: the product of two finitely generated C[G] modules is their tensor product over
C[G].

A virtual character is simply a Z-linear combination of the irreducible characters. To a
virtual representation one can associate a virtual character by replacing each representation
in the formal linear combination by its character.

1.2. Tensor Products and Exterior Products. A standard way to construct new
representations is by taking tensor products. If M1 and M2 are C[G] modules, M1 ⊗

C[G]
M2

is a C[G] module, with the action of g defined through g(m1 ⊗m2) = (gm1) ⊗ (gm2). The
character of the tensor product is the product of the characters. Through this, Λr(M)
becomes a C[G] module as it is a quotient of M⊗r by the ideal generated by elements of the
form m1 ⊗m2 +m2 ⊗m1, which is fixed by the action of G. The image of v1 ⊗ v2 ⊗ . . .⊗ vr
in the quotient is denoted by v1 ∧ v2 ∧ . . . ∧ vr. Flipping the order of two adjacent factors
negates the wedge product. The character of Λr(M) has a concise description.

Proposition 1.3. Let M be an n dimensional representation of G. Let g ∈ G act on
M by a linear transformation which has eigenbasis {ei} with eigenvalues {λi}. Then the
character of Λr(M) evaluated at g equals∑

1≤i1<i2<...ir≤n

λi1λi2 . . . λir

In particular, this equals the rth elementary symmetric polynomial evaluated on the eigen-
values {λi}.

Proof. This follows from picking an eigenbasis for Λr(M) given by ei1∧ei2∧. . .∧eir with
1 ≤ i1 < i2 . . . < ir ≤ n and by the definition of the elementary symmetric polynomials. �

In the case r = 2, Section 2.1 of Serre [24] describes the standard decomposition of
M ⊗M into Sym2(M) ⊕ Λ2(M), where Sym2(M) is the subspace of M ⊗M generated by
m1 ⊗m2 +m2 ⊗m1. In particular, if χ is the character associated to M then the character
of Λ2(M) is

(3) χ2
alt(g) =

1

2
(χ(g)2 − χ(g2)).

1.3. Induced Representations and Permutation Representations. Another way
to construct new representations is through extending representations from subgroups to the
whole group, or by restricting representations to subgroups.

Definition 1.4. Let H < G and let W be a representation of G. Then the restriction
of W to H is given by viewing W as an C[H] module, and is denoted by ResGH(W ).

It is obvious this is a representation of H. Going in the other direction, one can construct
a representation of the whole group through extension of scalars.

Definition 1.5. Let W be a representation for a subgroup H < G. The induced
representation IndGH(W ) is defined to be C[G] ⊗

C[H]
W .



1. FACTS FROM REPRESENTATION THEORY 11

An alternate description is in terms of left cosets. Let H be a subgroup of G with H
represented on a vector space W . If R is a system of representatives for G/H, then IndGH(W )
is a direct sum ⊕σ∈RWσH , where each Wσ is a copy of W . Writing element g ∈ G as σh with
h ∈ H and σ ∈ R, g acts on IndGH(W ) by sending w ∈ WτH to h(w) ∈ WστH .

It is also useful to understand the character of an induced representation.

Theorem 1.6. If χ is the character of a representation of H ⊂ G acting on W , then the
character of IndGH(W ) is

IndGH(χ)(g′) :=
1

|H|
∑
g∈G

g−1g′g∈H

χ(g−1g′g)

Proof. This is Theorem 12 of Serre [24]. �

A special kind of representation is a permutation representation. Suppose a group G
acts on a finite set S. Using the set S as a index set for a basis of an |S| dimensional vector
space V , V becomes a representation of G by defining ges by eg(s). Such a representation
is a permutation representation, and the associated module is called a permutation module.
The trace of a permutation representation evaluated at g is simply the number of fixed
points of the action of g on S. This implies that not all representations are permutation
representations: for some groups like Cn for n ≥ 3, not all characters take on integral values.

Example 1.7. Taking S = G with the group acting on the left, the associated permu-
tation representation is the regular representation of G. Taking S to be a single point gives
the trivial representation.

Example 1.8. If H is a subgroup G which acts on a one dimensional space trivially, the
induced representation is simply the permutation representation associated with the action
of G on the finite set of cosets G/H.

Although not every permutation representation is induced from a trivial representation
of a subgroup, there is the following partial result.

Proposition 1.9. A transitive permutation representation is induced from the trivial
representation on the stabilizer of a point H.

Proof. This can be proved using characters. Let χ be the character associated to the
transitive permutation representation, and H the stabilizer of a point. Let gα be coset
representatives for G/H corresponding to the points α. By Theorem 1.6,

IndGH(1H)(g) =
∑

α, g−1
α ggα∈H

1

=
∑

g−1
α ggα1=1

1 =
∑

ggα1=gα

1

=
∑
gα=α

1 = χ(g)

since the number of fixed points of a permutation representation is its trace. �

Permutation representations also naturally give embeddings of a group inside a permu-
tation group, allowing discussion of the cycle shape of an element.
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Definition 1.10. Given an embedding G ↪→ Sn, the cycle shape of g ∈ G is said to be
1r(1)2r(2) . . . nr(n) if there are r(i) cycles of length i in the standard cycle notation for g ∈ Sn.
The cycles of length 1 can be omitted from the description.

Note that this depends on the embedding: however, in the case of the Mathieu groups
there is a natural embedding of Mn ↪→ Sn that is understood.

1.4. Reduction to Subgroups. One way to understand representations of a group
G is to understand the representations of its subgroups. The first example of this sort of
theorem is Frobenius reciprocity.

Theorem 1.11 (Frobenius Reciprocity). Let H < G, ψ be a class function of H and φ
a class function of G. Then

(ψ,ResGH(φ))H = (IndGH(ψ), φ)G.

Proof. This follows from the fact that class functions are linear combinations of char-
acters, that for characters χ1, χ2 with representations V and W ,

dim HomG(V,W ) = (χ1, χ2),

and from the adjointness of Hom and tensor products. The full details are in section 7.2 of
Serre [24]. �

It also useful to study whether combinations of characters induced from special subgroups
are enough to produce all characters of G. Two general theorems along these lines are Artin’s
theorem and Brauer’s theorem. The proofs are found in Chapters 9 and 10 of Serre [24].

Theorem 1.12 (Artin). Every character of a group G is a rational linear combination
of characters induced from characters of cyclic subgroups of G.

A subgroup H of G is said to be p−elementary if H = A × B with A cyclic of order
prime to p and B a p-group. A subgroup H is said to be elementary if it is p−elementary
for some prime.

Theorem 1.13 (Brauer). Every character of a group G is an integral linear combination
of characters induced from characters of elementary subgroups of G.

We will need a specific kind of reduction that applies to the symmetric groups.

Proposition 1.14. Every character of Sn is of the form
∑
Hi⊂Sn

ai IndSnHi(1) with ai ∈ Z.

This result depends on the very concrete description of the representation theory of Sn
in terms of Young diagrams. A concise exposition, without proofs, is found in Zhao [30].
The proofs can be found in Chapter 7 of Fulton [9].

Definition 1.15. A partition of n is a decomposition n =
∑m

i=1 λi where λi ∈ Z and
λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 1.

To each partition λ = (λ1, . . . , λm), associate a Young diagram which consists of λi boxes
in the ith row.

A Young tableau is an assignment of the integers 1, 2, . . . , n to the boxes of a Young
diagram of shape λ.

A Young tabloid is an equivalence class of Young tableaux under row-equivalence: two
tableaux are equivalent if each row contains the same elements.
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These definitions are illustrated in Figure 1. The group Sn acts on the set of Young
tabloids of shape λ in the obvious manner. Denote the corresponding representation by Mλ.

Figure 1. Young Tableaux

Lemma 1.16. For a permutation λ of n, the permutation representation Mλ is transitive.
In particular, it is of the form IndSnH (1) for H < Sn.

Proof. Transitivity is clear from the definition. Proposition 1.9 shows that it is induced
from the trivial representation. �

Young tableaux can also be used to construct the irreducible representations of Sn.

Definition 1.17. For a tableau t, define Ct to be the group of permutations that only
permutes elements within each column of t. Define

et =
∑
π∈Ct

sign(π)π(t)

The Specht module, denoted Sλ, is the submodule of Mλ spanned by et where t ranges over
all tableaux of shape λ.

Theorem 1.18. The Sλ where λ ranges over partitions of n form a complete list of
irreducible representations of Sn. Sλ appears in Mλ with multiplicity one.

Proof. A proof is found in Section 7.2 of Fulton [9]. �

The last standard result we will need is about which other irreducible representations
appear in Mλ. The first step is to define a partial ordering on partitions of n.
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Definition 1.19. For partitions µ = (µ1, . . . , µn) and λ = (λ1, . . . , λm) of n, let µ ≥ λ if

µ1 + . . .+ µi ≥ λ1 + . . .+ λi

for every i. (µi or λi are set to be 0 if i > n or i > m respectively.)

This ordering determines which irreducible representations appear in Mµ.

Theorem 1.20. For partitions µ and λ of n, Mµ contains Sλ if and only if λ ≥ µ.

Proof. Again, a proof is contained in Section 7.2 of Fulton [9]. �

This knowledge about the Specht modules allows an easy proof of Proposition 1.14. Note
it suffices to prove the assertion for irreducible representations, which are exactly the Sλ by
Theorem 1.18. The theorem is true for λ = (n), for the Specht module in this case is
the trivial representation. Note that this partition is maximal with respect to the partial
ordering. Suppose that the assertion holds for all Sλ with λ > µ. Then the only irreducible
representations in Mµ are Sµ with multiplicity one and the Sλ for λ > µ by Theorem 1.20.
It follows that for integers cλ we have

Sµ = Mµ −
∑
λ>µ

cλS
λ.

But each Sλ is a integral linear combination of representations of the form IndSnHi(1) by
hypothesis, and Mµ itself is of this form by Lemma 1.16, so Sµ is as well.

Example 1.21. If n = 4 then λ = (4) and µ = (3, 1) are partitions of 4. Mλ is the trivial
representation, since the all of the boxes are in the same row and hence the only tabloid
is fixed by the action of Sn. On the other hand, Mµ is a four dimensional representation
since a tabloid is uniquely determined by the element in the box in the second row, and
the action of S4 is the standard permutation action. The associated Specht module is three
dimensional, and spanned by e1 − ei for i = 2, 3, 4 (with the action of π ∈ S4 still given by
π(ei) = eπ(i)). Thus in this case S(3,1) = M (3,1) − S4.

2. Constructions of M12

The goal of this section will be to construct M12, a first example of a sporadic finite
simple group. The most important feature of M12 is its action on a set of 12 points.

2.1. Transitive Actions. A group G acts on a set S via a homomorphism G
σ→ Aut(S).

The map σ is almost always suppressed, so σ(g)x is written gx.

• The action is faithful if σ is injective, i.e. only the identity element of G acts by the
identity permutation on S.
• The action is transitive if for any x, y ∈ S there exists a g ∈ G such that gx = y.
• The action is n-transitive if for every pair (x1, . . . , xn) (y1, . . . , yn) of n tuples with

distinct entries, there exists a g ∈ G such that gxi = yi for 1 ≤ i ≤ n.
• The action is n-homogeneous if for every set pair of sets of n points, there exists a
g ∈ G that sends that sends one set to the other.
• The action is sharply n-transitive if it is n−transitive and only the identity fixes n

distinct elements of S.
• If the action of G on S is sharply n−transitive and faithful, then

|G| = |S| · (|S| − 1) · . . . · (|S| − n+ 1).
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These standard facts are found in Chapter 9 Section 1 of Rotman [22].

Example 1.22. The standard action of Sn on the set of n elements is sharply n transitive.

Example 1.23. As detailed in Chapter 9 of Rotman [22], the group PGL2(F11), defined
to be the projectivization of two by two matrices with entries in the finite field with 11
elements and nonzero determinant, acts on the projective line P1

F11
by viewing a point with

homogeneous coordinates [x1, x2] as a vector in F2
11 and acting by matrix multiplication. This

can be shown to be a sharply three transitive group action. The group PSL2(F11), consisting
of the image in PGL2(F11) of two by two matrices with determinant 1, also acts on P1

F11
. It

is not 3−transitive, but it is 3−homogeneous.

The most important property of group M12 is its action. We will show the following:

Theorem 1.24. There exists a sharply 5−transitive group M12 acting on a set of 12
elements. The group has order 12 · 11 · 10 · 9 · 8.

There are many ways to construct the Mathieu groups. Different approaches are given in
detail in Rotman [22] and Dixon and Mortimer [7]. Many different methods are summarized
in the Atlas’s entry on the Mathieu groups [5]. The method here is based around Steiner
systems, and begins with the outer automorphism of S6.

2.2. The Outer Automorphism of S6.

Definition 1.25. An inner automorphism of a group G is automorphism of G given by
conjugation. An outer automorphism is an automorphism that is not inner.

Example 1.26. The map f : S6 → S6 sending σ to (12)−1σ(12) is an inner automorphism
of S6. It, and any other inner automorphism, must send a transposition to a transposition.

The surprising fact is that S6 has an outer automorphism, unlike any other symmetric
group. It arises through an exceptional action of S6 on a 6 point set. The matrix group
PGL2(F5) acts on a 6 point set P1

F5
, and hence is a subgroup of S6. The action is faithful and

sharply three transitive: for a proof see Theorem 9.48 of Rotman [22]. Now |GL2(F5)| =
24 ·20, the number of ways to pick a nonzero vector in F2

5 and to pick a second vector outside
the span of the first. Thus |PGL2(F5)| = 24 · 20/4 = 24 · 5. On the other hand, |S6| = 6!,
so the index of PGL2(F5) in S6 is 6. Therefore S6 acts on the 6 cosets S6/PGL2(F5): for
σ, τ ∈ S6, σ · (τ PGL2(F5)) = (στ) PGL2(F5). In particular, this gives an homomorphism ρ
from S6 to Aut(S6/PGL2(F5)) ' S6.

Proposition 1.27. The map ρ is an outer automorphism of S6.

Proof. To show ρ is an automorphism, it suffices to check it is injective. Let H be the
kernel of ρ. Since A6 is the only proper normal subgroup of S6, H is either {1}, S6, or A6.
However, a direct calculation can rule out the last two. A set of coset representatives for
PGL2(F5) in S6 are given by (), (1 2), (1 3), (2 3), (1 2 3), (1 3 2) because any element in
PGL2(F5) that fixes the three points 0, 4,∞ is the identity. The element (1 2 3) ∈ S6 acts
as two three cycles, permuting () (1 2 3) and (1 3 2) and permuting (2 3), (1 2), and (1 3).
Since (1 2 3) is even and does not lie in the kernel, the kernel is trivial. Furthermore, since
the image of (1 2 3) is not a three cycle, the automorphism must be outer, since any inner
automorphism sends a three cycle to a three cycle. �
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Remark 1.28. Sn has no outer automorphisms for n 6= 6. Any outer automorphism
sends the conjugacy class of transpositions to a conjugacy class of order 2 with the same
number of elements. For n 6= 6, there does not exist a different conjugacy class with the
proper number of elements (Theorem 7.5 of Rotman [22]).

It will be useful to understand what ρ does to cycles.

Lemma 1.29. The automorphism ρ sends a transposition to an element of shape 23. It
sends a three cycle to an element of shape 32. Furthermore, ρ sends a four cycle to a four
cycle and an element of cycle shape 1 2 3 to a six cycle.

Figure 2. S6 acting by its outer automorphism

Proof. Figure 2 shows the action of a specific transposition and a three cycle. Note
that all transpositions and three cycles act with the same pattern since they are conjugates.

Both the 4 cycle and the element of shape 2 3 are a composition of a transposition τ
and a three cycle σ. Since ρ(σ) is a product of two three cycles and ρ(τ) is of shape 23,
ρ(τσ) is determined by the way ρ(τ) interacts with the two sets of points induced by ρ(σ).
If it interchanged the two three cycles, the composition would be a 6 cycle. Otherwise, the
transposition interchanges two points within each three cycles, and hence the composition
fixes two points. In the case of an element of order four, the last case must occur and the
image must be of order four, so ρ(τσ) is a four cycle. For an element of shape 2 3, the image
must be of order 6 and so is a six cycle. �

2.3. The Steiner System S(5, 6, 12). The exceptional outer automorphism of S6 yields
a construction of the exceptional Steiner system of type S(5, 6, 12).

Definition 1.30. Let 1 < t < k < v be integers. A Steiner system of type S(t, k, v)
consists of the pair (S,B), with S a finite set with v elements, and B a family of k element
subsets of S such that every t elements of S lie in a unique block B ∈ B.

Example 1.31. The set of lines in an affine or projective plane over a finite field with q
elements give Steiner systems of type S(2, q, q2) and S(2, q + 1, q2 + q + 1).

The Steiner systems of type S(5, 6, 12) is exceptional because it does not fall into any
known infinite family. Determining whether any Steiner systems exist for a given set of
parameters is an open problem.
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Let S be a set of 12 points, 6 labeled 0, 1, 2, 3, 4,∞ and the other 6 labeled by cosets of
S6/PGL2(F5). Let the points be denoted by T and the cosets by T ′. Let S6 act on T via
the usual action and on T ′ via the outer automorphism. The action of (1 2) and (1 2 3) are
pictured in Figure 3.

Figure 3. Action of S6 on S

Proposition 1.32. Let B consist of the following subsets of S:

(1) For a transposition τ ∈ S6, the two elements of T that are interchanged by action
of τ , plus two of the pairs of the cosets switched by the action.

(2) For a transposition τ ∈ S6, the four elements of T fixed by the action of τ , plus one
of the three pairs of cosets switched.

(3) For a three cycle σ ∈ S6, the three elements of T permuted by the action of S6, and
one of the two cycles of T ′.

(4) T and T ′.

The set S along with B form a Steiner system of type S(5, 6, 12).

The following lemmas are useful in proving this:

Lemma 1.33. Consider the three pairs of cosets induced by the action of (1 2). No three
cycle of the form (1 2 p) for p 6= 1, 2 ∈ T sends a coset to the coset it is paired with.
Furthermore, for any three cosets, one from each pair, there is a unique p such that the
action of (1 2 p) permutes them.

Proof. It is possible to prove this purely mechanically through direct calculation and
checking which permutations arise through fractional linear transformations of F5. Alter-
nately, suppose p = 4 (p = 3 is obvious from Figure 3, and the other cases are identical to
the case p = 4). Consider the action of (1 2 4)(1 2) = (1 4): since it is a transposition it
pairs up the three cosets. However, if the action of (1 2 4) sent a coset to its pair under
(1 2), then the action of the composition would fix a coset, a contradiction.

Furthermore, there are 8 triples of cosets induced by the four three-cycles (1 2 p). There
are 8 ways to pick three cosets one from each pair, so it suffices to show no two three-
cycles identify the cosets in the same way. Suppose (1 2 p) and (1 2 q) did. Then either
(1 2 p)(1 2 q) or (1 2 p)(1 q 2) will fix three of the triples. However, the composition is a
product of two disjoint transpositions. The outer automorphism of S6 fixes the conjugacy
class of two disjoint transpositions, so the action of the composition fixes at exactly 2 cosets,
a contradiction. �
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Lemma 1.34. There exists a permutation of S of order 2 that switches T and T ′ and
sends blocks to blocks.

Proof. Such a permutation is given by

(1 ())(2 (1 2))(3 (1 3))(4 (1 2 3))(0 (1 3 2))(∞ (2 3)).

A computer can quickly verify that it sends blocks to blocks.
A conceptual way to see this will be presented by giving a second construction of

S(5, 6, 12) involving PSL2(F11), along with an explanation of why this is presented now. �

The proof of Proposition 1.32 now proceeds by cases.

Proof. Given 5 points, we must show a unique block contains them.
If all five points are elements of T ′, then the 6 points of T ′ form a block containing them.

Inspection of the other cases shows that no other blocks contain five points.
If only one point is an element of T , then the only possible kind of block that can contain

the five points is a block of type 1. There is a unique transposition (1 p) that swaps the two
unselected cosets. Let the unselected cosets be H and H ′. There are 5 possible transpositions
of the form (1 p), and 5 cosets for H to be sent to. If (1 p) and (1 q) send H to the same
coset, then (1 p)(1 q) fixes it H. But (1 p)(1 q) = (1 q p) does not fix any coset. Thus no
two transpositions (1 p) send H to the same coset, so one must send it to H ′. This shows
the five points are contained in a unique block.

If two points are elements of T , look at the transposition flipping the two of them. For
concreteness, assume the points are 1 and 2. There are three cosets. (1 2) pairs up the
cosets. If two of the three selected cosets lie in the same pair, a block from condition 1
exists containing all 5 points. No block from condition 2 or 4 contains all 5. No block from
condition 3 can contain the 5 points by Lemma 1.33 since two of the three cosets lie in the
same pairing under (1 2). Otherwise, if no two of the cosets are paired by (1 2), there is a
three cycle (1 2 p) which identifies the three cosets by Lemma 1.33. The block consisting of
the three cosets and 1, 2, and p works. It is clear no other block can contain the 5 points.

If 3 or more points are elements of T , then applying the map of Lemma 1.34 reduces it
to one of the above cases.

This completes the proof that S and B form a Steiner system of type S(5, 6, 12). �

The existence of the Steiner system of type S(5, 6, 12) implies the existence of smaller
Steiner systems.

Proposition 1.35. If (S,B) is a Steiner system of type S(t, k, v), define S ′ to be S−{p}
and B′ to be {B − {p} : B ∈ B and p ∈ B}. Then (S ′,B′) is a Steiner system of type
S(t− 1, k − 1, v − 1).

Proof. Given t−1 points of S ′, there is a unique element of B containing them and the
point p. This block corresponds to a block of B′ containing the t− 1 points. �

In particular, contracting the Steiner system of type S(5, 6, 12) gives a Steiner system of
type S(4, 5, 11).

Definition 1.36. An automorphism of a Steiner system is a permutation of its points
which sends each block to a block. Two Steiner systems are said to be isomorphic if there
exists a bijection between their sets that sends blocks to blocks.

The Mathieu group M12 is defined to be the automorphism group of S(5, 6, 12).
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The Mathieu group M11 is defined to be the automorphism group of S(4, 5, 11).

This definition of M12 clearly show the action on a 12 point set. However, it is far from
clear that the action is sharply 5−transitive, or even that there are many elements at all in
M12. One permutation that obviously lies in M12 is the permutation of order 2 from Lemma
1.34 which has cycle shape 26. A second class arise from the action of S6.

Proposition 1.37. The permutations that arise from S6 acting on S are automorphisms
of the Steiner system and hence lie in M12.

Proof. Since S6 is generated by the transpositions, it suffices to check that the action
of a transposition preserves the block structure. It suffices to check this for the transposition
(1 2). This transposition’s action clearly fixes T and T ′. It is also clear that it preserves the
blocks from conditions 1 and 2 arising from (1 2).

Now consider a block arising from the transposition (1 p), where p 6= 1, 2,. The coset
σ PGL2(F5) is paired with (1 p)σ PGL2(F5). A block that consists of 1, p and two pairs
of T ′ is sent by (1 2) to 2, p, and four points of T ′. They are paired, for σ PGL2(F5) and
(1 p)σ PGL2(F5) are sent to

(1 2)σ PGL2(F5) and (1 2)(1 p)σ PGL2(F5) = (2 p)(1 2)σ PGL2(F5)

which are paired by (2 p). Thus the blocks arising from condition 1 and 2 for (1 p) are
preserved.

A transposition (p q) with p, q 6= 1, 2 commutes with (1 2), and hence the transposition
(1 2) respects the pairing induced by (p q). This implies the blocks from condition 1 and 2
are preserved.

A three cycle (1 2 p) creates two blocks by condition 3. By Lemma 1.33, the action of
(1 2) flips these two blocks, and so preserves the block structure.

A three cycle (p q r) with p, q, r 6= 1, 2 also creates two blocks. It commutes with (1 2),
and hence the action of (1 2) preserves the two three cycles (p q r) induces on T ′. Since (1 2)
fixes the three points p, q, r ∈ T , this means it sends blocks of this type to blocks.

A three cycle (1 p q) with p, q 6= 1, 2 creates two blocks. The transposition (1 2) sends
the points 1, p, q to 2, p, q. (1 2) sends the three cosets σ PGL2(F5), (1 p q)σ PGL2(F5), and
(1 q p)σ PGL2(F5) to (1 2)σ PGL2(F5), (1 2)(1 p q)σ PGL2(F5) = (2 p q)(1 2)σ PGL2(F5),
and (2 q p)(1 2)σ PGL2(F5). These three cosets, along with the points 2, p, q, form a block
through condition 3. Thus (1 p q) preserves the block structure of the Steiner system.

This verifies that (1 2) preserves the block structure of S(5, 6, 12). The same proof works
for any transposition, so the permutations induced by the action of S6 on S lie in the Mathieu
group. �

There are many alternate constructions of a Steiner system S(5, 6, 12) that easily give
other pieces of information about M12. The choice of construction is irrelevant, because:

Proposition 1.38. All Steiner systems of type S(5, 6, 12) are isomorphic. In particular,
M12 is well defined.

This proof is adapted from the proof found in Chapter IV Section 2 of Beth, Jungnickel,
and Lenz [2]. The key idea is to contract the Steiner system three times, ending up with a
Steiner system of type S(2, 3, 9), which is an affine plane. By understanding the geometry of
this plane one shows that S(5, 6, 12) is uniquely determined. The first step is to show that
Steiner systems of type S(2, 3, 9) are unique up to isomorphism.
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Figure 4. Leech triangle for M12

132
66 66

30 36 30
12 18 18 12

4 8 10 8 4
1 3 5 5 3 1

1 0 3 2 3 0 1

Lemma 1.39. All Steiner systems of type S(2, 3, 9) are isomorphic to a two dimensional
affine plane over F3.

Proof. Pick a block B of a Steiner system of type S(2, 3, 9). Let p be a point not in this
block. p induces a pairing on the remaining 6 points based on which pairs of points are in
a block with p. Three pairs include a point of B and a point not in B, while the remaining
pair comes from a block B′ consisting of 3 points not in B. Let q be a point not in B or
B′. Again, there is a block B′′ disjoint from B containing q. It cannot intersect B′ in two
points since there is a unique block through any two points. Suppose it intersects B′ in a
single point p′. Then pairing the points outside of B based on the point p′, the B′ − {p′}
and B′′ − {p′} are paired by hypothesis. This means that the sixth point outside of B must
be paired with a point of B, but then that two points of B must be paired. This violates
the assumption that through any two points there is a unique block. Thus there are blocks
disjoint B′ and B′′ that partition the set of 9 blocks.

Referring to the blocks as lines, this says there are four parallel classes of lines in this
Steiner system, corresponding to the 4 lines through a fixed point p. (There are 12 =

(
9
2

)
/
(

3
2

)
lines total.) Pick one parallel class, and write down the lines in three rows. Rearrange within
each row so that each column is a line. Given any two points not in the same row or column,
there is a unique point that is in the third row and column. This is the only point that can
be on the line joining these two points, since any two points must determine a unique line.
This matches the description of the lines in an affine plane. �

To prove Proposition 1.38, the first step is to use the Leech triangle to extract information
about the intersection of blocks based solely on the combinatorial properties of S(5, 6, 12).
Fix a block S, subsets Si ⊂ S with |Si| = i and Si ⊂ Si+1. The Leech triangle is defined
so that the ith number in the nth row is the number of blocks B such that Si = Sn ∩ B.
This turns out to be easy to calculate. The fact that the number of blocks containing Si is
the number of ways to pick 5 − i more points (which is

(
12−i
5−i

)
/
(

6−i
5−i

)
) gives the right hand

side of the triangle. Note that this is independent of the choice of Si. The number of blocks
meeting Sn in exactly Si is the number of blocks meeting Sn+1 in Si plus the number of
blocks meeting Sn+1 is Si ∪ (Sn+1\Sn), which is the same as the number of blocks meeting
Sn+1 in Si+1. Then this relation along with the rightmost column completely determines
the Leech triangle, and is independent of the choices made. The whole triangle is shown in
Figure 4. In particular, the triangle tells that the since no blocks intersect in 1 point the
complement of a block must be a block.

Now let D = (S,B) be a Steiner system of type S(5, 6, 12), and D′ = (S ′,B′) be the
contraction at three points ∞1,∞2 and ∞3. It is of type S(2, 3, 9), so is an affine plane by
Lemma 1.39. The 132 blocks of D are of the following types:
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(1) 12 blocks of the form L ∪ {∞1,∞2,∞3} where L is a line of D′.
(2) 12 blocks that the union of two parallel lines of D′, the complement of the blocks

in 1.
(3) Blocks of the form A ∪ {∞i,∞j} where i 6= j and A is a four element subset of S ′

with no three points colinear.
(4) Complements of blocks in 3, which are sets {∞i} ∪L∪M where L and M are lines

of D′ that intersect in a point.

Since there 132 blocks total and the number of blocks arising from 3 and 4 are equal, there
54 of each of these types. Call the union of two non-parallel lines in D′ a counteroval.

Observe that the counterovals O are subdivided into three classes Ai based on which ∞i

to add so that A∪ {∞i} ∈ B. There are 18 for each choice of ∞i. If two counterovals are in
the same class, then they cannot intersect in exactly four points, for then two blocks of D
would intersect in 5 points, violating the Leech triangle.

The next step is to show that there is a unique equivalence relation on the set of 54
counterovals divided into three equivalence classes with the property that two equivalent
counterovals never intersect in exactly four points. This proceeds in a sequence of steps,
illustrated in Figure 5.

Figure 5. Proof of Uniqueness of S(5, 6, 12)

(A) If K, L, and M are sides of a triangle, then since K ∪ L meets K ∪M in 4 points
K ∪ L 6' K ∪M .

(B) If K, L, M , and N are mutually non-parallel with K,L, and M having a common
point not on N , then K ∪M ' L∪N 6' K ∪N ' L∪M 6' K ∪L 'M ∪N . To prove this,
note that by A, we know that L∪N 6' K∪N,M∪N and that K∪M 6' K∪N,M∪N . Since
there are only three equivalence classes, this forces K ∪M ' L ∪N . The other statements
follow by permuting the lines.

(C) Let K,L,M,N be four distinct lines of D′ with K 6‖ L ‖M 6‖ N ‖ K (geometrically,
a parallelogram). Then the diagonals P and Q intersect in a point s. Using condition (B),
K ∪ L ' P ∪Q and M ∪N ' P ∪Q. Since ' is an equivalence relation, K ∪ L 'M ∪N .
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(D) Let K 6‖ L ‖M . Letting P and Q be the lines parallel to K as pictured in the figure.
Then using (C), K ∪ L 'M ∪ P ' L ∪Q ' K ∪M .

(E) If K,L,M,N are mutually non-parallel, then there is a line L′ ‖ L such that K, L′,
and M have a point in common. Using (B) and (D), it follows that K∪L ' K∪L′ 'M∪N .

These conditions show that if K ∩ L 6= ∅ and M ∩N 6= ∅ then

K ∪ L 'M ∪N if K ‖M and L ‖ N, or K ‖ N and L ‖M, or K,L 6‖M,N

This condition is only if as well, because otherwise all counterovals would be equivalent.
Thus there is a unique equivalence relation with the property that equivalent counterovals
cannot intersect in four points.

This tells us that the three classes of counterovals Ai are uniquely determined by D up
to re-indexing. In particular, the blocks of D are uniquely determined, up to re-indexing,
because the blocks of D are determined by conditions 1 and 4 since the complement of a
block is a block. Thus there is a unique Steiner system of type S(5, 6, 12) up to isomorphism.

An alternate construction of the Steiner system is through the squares modulo 11, which
makes it clear that M12 is transitive on the blocks of the Steiner system.

Theorem 1.40. The group PSL2(F11) acts on P1
F11

. Let T = {∞, 1, 3, 4, 5, 9}, the qua-
dratic residues modulo 11 and ∞. Define B := {L(T ) : L ∈ PSL2(F11)}. Then (P1

F11
,B) is a

S(5, 6, 12) Steiner system.

Proof. This proof is inspired by a construction from Beth, Jungnickel, and Lenz [2],
Chapter IV Section 1.2. It is clear that for any three points there are the same number
of blocks containing them, for the action of PSL2(F11) is 3−homogeneous (Example 1.23).
Note that T is fixed by the five mappings x → sx, where s is a non-zero square. These
mappings are also in PSL2(F11). This means that the order of the stabilizer of T is 5m for
some m ∈ Z. The number of blocks is |PSL2(F11)|/5m = 132

m
. The number of blocks through

the three points 0, 1,∞ is equal to the number of blocks times the number of ways to pick 3
points in the block, divided by the number of ways to pick three points of P1

F11
, so there are

12
m

blocks containing 0, 1,∞. Twelve such blocks are listed in Table 1, which implies m = 1.

Table 1. Blocks containing 0, 1,∞.

A A(T) A A(T)(
0 1
10 4

)
0, 1,∞, 2, 4, 10

(
0 1
10 5

)
0, 1,∞, 3, 6, 8(

1 2
3 7

)
0, 1,∞, 4, 8, 9

(
1 8
0 1

)
0, 1,∞, 2, 6, 9(

1 8
10 4

)
0, 1,∞, 3, 9, 10

(
1 8
6 5

)
0, 1,∞, 2, 7, 8(

1 10
8 4

)
0, 1,∞, 3, 4, 7

(
1 10
5 7

)
0, 1,∞, 5, 7, 9(

1 7
0 1

)
0, 1,∞, 5, 8, 10

(
1 7
1 8

)
0, 1,∞, 6, 7, 10(

1 7
2 4

)
0, 1,∞, 4, 5, 6

(
1 6
1 7

)
0, 1,∞, 2, 3, 5
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These twelves blocks can be realized as the rows, columns, and generalized diagonals of2 3 5
6 7 10
9 4 8

 .

But these 12 sets form a Steiner system of type S(2, 3, 9) on these nine points (an affine
geometry). Thus through any 2 points besides 0, 1,∞, there is a unique six element set
containing 0, 1,∞ and those two points. Because PSL2(F11) is 3−homogeneous, any three
points can be moved to {0, 1,∞} so this is a S(5, 6, 12) Steiner system. �

Corollary 1.41. M12 is transitive on the blocks of S(5, 6, 12).

This provides enough information to prove Theorem 1.24.

Proof. From the second construction of the Steiner system, it is clear that PSL2(F11) is
a subgroup of M12 and that M12 acts transitively on blocks. Thus the block T can be sent to
the unique block containing 0, 1, 2, 3 and 4. Then composing with the appropriate element
of M12 arising from S6 by Proposition 1.37, the points 0, 1, 2, 3, 4 can be permuted so the
composition sends them to the five given points in the proper order, showing the action to
be five transitive. If any permutation fixes 5 elements, by transitivity assume they are five
elements of T ′. Since the permutation preserves the block structure, the sixth point of T ′

must be fixed as well. Now, suppose the permutation sends p1 to p2 in T . Since the block
containing p1, p2, and 4 points of T ′ must be fixed, p2 is sent to p1. For any third point p3 of
T , the block containing p1, p3, and four points of T ′ must be sent to a block. This implies that
p3 is sent to the last point of the block containing those four points of T ′ and p2. However,
this means the permutation cannot fix the block containing p1, p2, p3, and three points of T ′,
but the three points of T ′, p1, and p2 are kept within the block. This contradiction shows
that M12 acts sharply 5−transitively on S. In particular, |M12 | = 12 · 11 · 10 · 9 · 8. �

The original motivation for looking at the Mathieu groups was their relation to the
Monster. It is worth noting that:

Theorem 1.42. M12 is a simple group.

Proof. This is proven as Theorem 9.59 of Rotman [22]. �

2.4. Alternate Constructions. There are many other constructions of M12, many of
them sketched briefly in the atlas of finite groups. One alternative is to construct M24 first,
in which case M12 is a 12 point stabilizer. This is the approach taken in Griess [11]. Alter-
natively, the Steiner system S(5, 6, 12) and their automorphism groups can be constructed
starting with S(2, 3, 9), an affine plane. In Dixon and Mortimer [7], this affine is plane is
shown to extend uniquely to a S(3, 4, 10), which in turn extends uniquely to a S(4, 5, 11) and
S(5, 6, 12). The perspective is flipped in Rotman [22], where the automorphism groups of
the Steiner systems are constructed without reference to the Steiner systems, starting with
a subgroup of PGL2(F9). On the other hand, Mathieu’s original definitions simply gave M12

in terms of generators (Chapter 6 Section 8 of Dixon and Mortimer [7]).

3. Constructions of M24

This section will briefly discuss constructions of M24, the relative of M12 acting on 24
points, but in much less detail than the constructions of M12. The basic fact is that:
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Theorem 1.43. There exists a simple 5 transitive group M24 acting on a set of 24 points.
It has order 244823040.

As for M12, there are multiple methods of constructing M24. The group M24 can be
constructed analogously to M12 using an outer automorphism. The key fact is M12’s outer
automorphism.

Theorem 1.44. M12 has an outer automorphism. It interchanges the conjugacy classes
of orders 4 and interchanges the classes of order 8.

Proof. There is a proof in Rotman [22]. �

Using this outer automorphism, M12 can be made to act on a set of 24 points, and the
cycle shapes of elements in M12 can be used to construct a Steiner system of type S(5, 8, 24).
The group M24 is then the automorphism group of this Steiner system. The process stops
here, since M24 has no outer automorphisms [5].

However, this isn’t quite the way to go about constructing M24, because the simple
proof of the existence of this outer automorphism, given in Rotman [22], depends on the
existence of M24. Instead, as presented after Lemma 8.5 of Cameron [4], one looks at the
graph whose nodes are pairs of complementary blocks with nodes connected if the blocks
intersect in 3 points. Using a uniqueness result on graphs, pairs of complementary blocks
are put in bijection with pairs of points drawn from another 12 element set. A S(5, 6, 12)
Steiner system can be constructed on this second set. These can be pieced together to get a
S(5, 8, 24) Steiner system.

Alternately, the blocks of a Steiner system of type S(5, 8, 24) can be constructed from the
action of PSL2(F23) on the projective line, much like the second construction of S(5, 6, 12).
Let H be the subgroup of PSL2(F23) generated by the matrices(

1 1
−1 1

)
and

(
3 1
1 −3

)
The orbit of ∞ under H is

B := {∞, 0, 1, 3, 12, 15, 21, 22}.
Define B := {g(B) : g ∈ PSL2(F23)}. It turns out the stabilizer of B under the action of
PSL2(F23) has 8 elements, and there are 21 blocks in B passing through {0, 1,∞}. The other
five elements of these blocks form 21 five element sets. A lengthy but simple check shows
that for any two of the points in P1(F23) besides 0, 1,∞, there is a unique five element set
containing those points. This means that the blocks B form a Steiner system on P1(F23) of
type S(5, 8, 24). There are more details in Chapter IV Section 1 of Beth, Jungnickel, and
Lenz [2].

The blocks of the Steiner system S(5, 8, 24) can also be constructed by extending a Steiner
system of type S(2, 5, 21) which arises as the geometry of a two dimensional projective plane
over F4. It is shown in Dixon and Mortimer [7] how to extend this Steiner system three
times to obtain a system of type S(5, 8, 24). In Rotman [22], the automorphism groups of
the Steiner systems are constructed through group extensions, starting with PSL3(F4) acting
on the projective plane. An alternate construction involves the Golay code as presented in
Griess [11]. All of these constructions give the same Steiner system and hence the same
group M24 by a uniqueness result similar to that for S(5, 6, 12).

Proposition 1.45. All Steiner systems of type S(5, 8, 24) are isomorphic.
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Proof. This is proven in Dixon and Mortimer [7]. Alternately, it follows from a unique-
ness theorem for the binary Golay code [11]. �

There are also smaller Mathieu groups occurring as stabilizers of M24.

Definition 1.46. The Mathieu group M23 is the stabilizer of a point in M24.
The Mathieu group M22 is the stabilizer of a point in M23.

Finally, M22, M23, and M24 can be shown to be simple groups.

4. Conjugacy Classes and Character Table for M12 and M24

The theory of moonshine for the Mathieu groups involves the cycle-shapes, and more
generally the irreducible representations, of the Mathieu groups. The above constructions
of M24 and M12 provide enough information to find all conjugacy classes and compute the
character tables, although the computations are long. Any one construction of course pro-
vides enough information in principal, and a computer algebra system such as Sage [23] can
calculate the conjugacy classes and character tables in a routine manner, with significant
computational effort. The benefit of multiple descriptions is that each provides an easy look
at one particular aspect of the Mathieu groups. Since these are sporadic simple groups,
it is understandable that there is no single description that illuminates all of the relevant
properties.

In this section, the conjugacy classes for M12 are determined in full detail, as well as some
of the irreducible characters of M12. This illustrates the techniques that would be used to
determine the conjugacy classes of M24 and the full character tables for M12 and M24. The
full character table for M12 and M24 are listed in the atlas [5].

4.1. Conjugacy Classes in M12. There are two classes of permutations that obviously
lie in M12: those arising from the action of S6 on the set S of 12 points (Proposition 1.37,
about the first description) and those in PSL2(F11) ⊂ M12 arising from the second description.

The action of S6 illuminates conjugacy classes of the following cycle-shapes:

• 14 24, arising from a two cycle in S6. Given an element g2 of cycle shape 14 24,
there exists 4 blocks such that g2 acts on the block with cycle shape 142 and the
complementary block with cycle shape 23. There is a unique block containing the
two points flipped by each transposition of g2 and three of the points fixed by g2.
Since g2 preserves the Steiner system, this block must contain all four points fixed
by g2. Thus every element of shape 14 24 corresponds to the four transpositions.
There are 132 blocks, and since M12 is transitive on blocks by Corollary 1.41 it
suffices to look at the block T where there are 15 transpositions. This gives a total
of 132 · 15 = 1980 elements of shape of 14 24. But each arises 4 times, so there are
495 distinct elements of cycle-shape 24 in M12.
• 13 33, arising from a three cycle 3 in S6. Given such a g3 ∈ M12, an argument like

the one above shows that any three cycle, plus the points fixed, is a block. Any
block and any three cycle in that block induces a permutation of cycle shape 13 33,
each of which appears 3 times. Thus there are 132 · 40/3 = 1760 such elements.
• 14 42, arising from a four cycle in S6. Any cycle of shape 14 42 preserves 4 blocks:

each block contains one of the four cycles along with two of the fixed points. Fur-
thermore, by Lemma 1.29, a four cycle acts with shape 42 on S. For each of the
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132 blocks and each of the 90 four cycles in them, this creates an element of shape
14 42. Each is repeated 4 times, so there are 2970 elements of cycle shape 14 42.
• 22 42, arising from an element of cycle shape 2 4 in S6. By Lemma 1.29, an element

of shape 2 4 cannot be sent to a four cycle, so must be sent to an element of shape
2 4. The counting argument is essentially the same as for the 14 42 case. There are
2970 such elements.
• 12 52, arising from a 5 cycle in S6. Each element of this shape fixes 2 blocks, and

there are 144 five cycles in each of 132 blocks, for a total of 9504 elements.
• 1 2 3 6, arising from an element of shape 1 2 3 in S6. By Lemma 1.29, a 6 cycle acts

with shape 1 2 3.. Given an element of this shape, there is only one block containing
the 6 cycle. So for every block, and all of the 120 six cycles in it, there are distinct
elements of shape 1 2 3 6 in M12. Thus there are 15840 elements of this type.

The subgroup PSL2(F11) gives further conjugacy classes. To find the size of these classes
we want to find the centralizer, since the size of the conjugacy class is the order of M12 divided
by the order of the centralizer. However, which permutations lie in the centralizer depends
on the whole structure of M12, not just the subgroup PSL2(F11). To compute the order of
the centralizer thus requires checking mechanically whether certain permutations preserve
the block structure. This makes the remaining observations inherently computational.

• Eleven cycles, arising from the matrix

(
1 1
0 1

)
which has order 11 by inspection. The

centralizer of this element in M12 are just its powers, so there are 95040/11 = 8640
such elements in the conjugacy class. However, if σ is an eleven cycle then σ and
σ2 are not conjugate. This can be verified by simply writing down the blocks and
checking that any permutation that would make the two conjugate does not preserve
the block structure.
• Elements of cycle shape 26, which can be produced from the map z → a

z
where a

is a non-residue modulo 11. Having a computer compute the centralizer, there are
396 such elements.

• Elements of cycle shape 34, arising from the matrix

(
1 1
−1 0

)
, which clearly has

order 3 and fixes no point of P1(F11). Thus it must act with shape 34. There are
2640 such elements.

• Elements of cycle shape 62, arising for example from the matrix

(
1 1
7 0

)
. Anything

that centralizes this element must either be a power or must flip the two six cycles.
There are 7920 such elements.

By combining elements from the two descriptions, the remaining conjugacy classes can
be found. The results are again inherently computational, since they rely on the fact that
the two constructions of a Steiner system of type S(5, 6, 12) are isomorphic and need to
implicitly or explicitly identify the two.

• Elements of cycle shape 10 2. These arise from a combination of the elements with
shapes 52 and 26. Lemma 1.34 gives an explicit permutation τ of shape 26, while
an element of shape 12 52 arising from the action of S6 is shown in Figure 6. The
product τσ can be directly computed to be of shape 10 2. The centralizer is only
the 10 powers of this element, so the conjugacy class contains 9504 elements.
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Figure 6. Permutation of Order 5 in M12

• Elements of cycle shape 8 4. They arise as a product of an element of shape 24 and
one of shape 2 3 6. However, those cannot both arise simply from the action of S6.
Instead, at least one must be conjugated by a permutation arising from PSL2(F11)
that doesn’t fix the block T . This requires either writing down an identification
between the two Steiner systems, or finding an element of this shape directly, and
verifying it preserves the Steiner blocks constructed through the outer automorphism
of S6. Such a permutation is given by

(1 () ∞ 0 2 (1 2) 4 3)((1 2 3) (1 3) (1 3 2) (2 3)).

A direct calculation shows it preserves blocks. The centralizer is only the 8 powers
of this element, so the conjugacy class contains 11880 elements.
• Elements of shape 8 2. Composing the element of shape 8 4 given above with the

element of shape 26 given in Lemma 1.34 gives the element

(0 (1 2) (1 2 3) 3 () (2 3) 4 (1 3))(∞ (1 3 2))

of shape 8 2. The centralizer is only the 8 powers, so the conjugacy class contains
11880 elements.

The number of elements identified so far is 95040, the order of M12, so the above argu-
ments have found all of the conjugacy classes. The information is summarized in Table 2.
Note there are two conjugacy classes of shape 11.

Table 2. Cycle Shapes of M12

Cycle Shape Centralizer Order Elements Cycle Shape Centralizer Order Elements
112 95040 1 14 24 192 495
26 240 396 13 33 54 1760
34 36 2640 22 42 32 2970

14 42 32 2970 12 52 10 9504
1 2 3 6 6 15840 62 12 7920
12 2 8 8 11880 4 8 8 11880
12 10 10 9504 1 11 11 17280

4.2. Some irreducible characters of M12. Recall that a character χ of an irreducible
representation satisfies (χ, χ) = 1 and such an equality implies that χ comes from an ir-
reducible representation. The goal here is to illustrate some techniques for constructing
irreducible characters of M12 and M24, but not to find the complete character table.
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The trivial character χ1 is always irreducible. Furthermore, the knowledge of the cycle
shapes of M12 determines a character χ12 through the permutation representation of M12 on
12 points. The trace is simply the number of fixed points of the permutation. It can be
written χ12 = χ1 + χ11, where χ11 is irreducible. The assertion can be checked by verifying
(χ11, χ11) = 1.

One method of constructing further irreducible characters is by looking at the exterior
powers of a known irreducible character. Λ2(χ11) has character χ55(g) := 1

2
(χ11(g)2−χ11(g2)).

This character turns out to be irreducible, as (χ55, χ55) = 1. In general, the hope is to project
the new character onto the subspace of class functions spanned by the known irreducible
characters and have the projection be a new irreducible character. This does not always work:
trying this again on χ55 gives a character that decomposes as 2χ55 + χ′, where (χ′, χ′) = 25
and χ′ is orthogonal to χ1, χ11, and χ55. The known irreducible characters are listed in Table
3.

Table 3. Some irreducible characters of M12

1 24 26 33 34 42 42 22 52 2 3 6 62 8 2 8 4 10 2 11 11
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ11 11 3 -1 2 -1 3 -1 1 0 -1 1 -1 -1 0 0
χ55 55 -1 -5 1 1 3 -1 0 -1 1 -1 1 0 0 0

A second place to look is in the symmetric square. The character χ66 := Sym2(χ11)
comes from a 66 dimensional representation, but is not irreducible. It decomposes as χ66 =
χ1 + χ11 + χ54, and χ54 turns out to be irreducible. All these assertions can be checked
using the inner product. χ54 turns out to be orthogonal to χ′, so it gives no further help at
decomposing χ′.

Since Theorem 1.44 says M12 has an outer automorphism, any irreducible character can
be composed with the outer automorphism to yield an irreducible character which may be
new. For example, the irreducible characters χ11 and χ55 give new characters χ′11 and χ′55

after switching the values on the conjugacy classes of order 4 and 8. These new characters
are listed in Table 4.

Table 4. Some more irreducible character of M12

1 24 26 33 34 42 42 22 52 2 3 6 62 8 2 8 4 10 2 11 11
χ′11 11 3 -1 2 -1 -1 3 1 0 -1 -1 1 -1 0 0
χ54 54 6 6 0 0 2 2 -1 0 0 0 0 1 -1 -1
χ′55 55 -1 -5 1 1 -1 3 0 -1 1 1 -1 0 0 0

An alternate approach is to try to induce characters from a subgroup of M12. A copy
of S6 is a subgroup of M12, where it is embedded via the action of S6 on the twelve points
of S. Taking the trivial character on S6, denote the induced character IndM12

S6
(1) by χ132.

Theorem 1.6 gives the formula

χ132(g′) =
1

720

∑
g∈M12

g−1g′g∈S6

1.

Taking g′ = 1 shows that the dimension of the representation associated to χ132 is in fact
132 dimensional. Table 5 shows the cycle shapes of elements in this copy of S6.
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Table 5. Cycle Shapes of S6 in M12.

Cycle Shape 112 14 24 13 33 14 42 4222 12 52 1 2 3 6
Number of Elements 1 75 80 90 90 144 240

To calculate the induced character on other conjugacy classes, let g ∈ M12 and let ng
denote the number of elements in the conjugacy class of g intersect S6. Then g is conjugate
to each of the ng elements in mg ways, where mg is the order of the centralizer of g in M12.
Then there are ngmg elements of M12 which conjugate g into S6, and hence χ132(g) = ngmg.
This character decomposes as χ132 = χ1+χ11+χ′11+χ54+ψ55, where ψ55 is a third irreducible
character of dimension 55. Its values are shown in Table 6.

Table 6. The Character ψ55 of M12

1 24 26 33 34 42 42 22 52 2 3 6 62 8 2 8 4 10 2 11 11
ψ55 55 7 -5 1 1 -1 -1 0 1 1 -1 -1 0 0 0

This process can be continued, calculating characters associated to various exterior
and symmetric powers, and inducing characters from characters of subgroups like S6 and
PSL2(F11). The point of this is that finding the character table of M12 requires finesse.
There is no way to predict how to obtain a new character that contains only one new ir-
reducible character without substantial trial and error: calculating complicated character
tables is more of an art than a science. The complete results for M12 are listed in the
atlas [5].

4.3. Conjugacy Classes and Character Table for M24. The conjugacy classes of
M24, and some knowledge about its character table, are necessary to understand moonshine
for M24. The same techniques as in the previous section, along with plenty of calculation,
give the conjugacy classes of M24 and its character table. But since this information is
included in the atlas and we have already exhibited the techniques for calculating it, there
is little point in working for it. A list of the conjugacy classes is reproduced here as Table 7.
There are two conjugacy classes of cycle shapes 13 73, 1 2 7 14, 1 3 5 15, 3 21 and 1 23.

Table 7. Cycle Shapes in M24, from [5].

Cycle Shape Centralizer Order Cycle Shape Centralizer Order
124 244823040 13 73 42

18 28 21504 12 2 4 82 16
212 7680 22 102 20

16 36 1080 12 112 11
38 504 122 12

14 22 44 128 2 4 6 12 12
24 44 384 1 2 7 14 14

46 96 1 3 5 15 15
14 54 60 3 21 21

64 24 1 23 23
12 22 32 62 24



CHAPTER 2

Modular Forms and Hecke Operators

This chapter presents the definitions and essential facts about modular forms for con-
gruence subgroups of SL2(Z), along with the theory of Hecke operators. Two special ways
to construct modular forms, η−products and modular forms with complex multiplication,
are described to prepare for a discussion of moonshine for the Mathieu group. An elegant
introductory account of this subject is given by Serre in Chapter 7 of Serre [25]. General
references for this subject include Iwaniec [12] and Koblitz [13].

1. Basic Properties of Modular Forms

Loosely speaking, modular forms are complex valued functions on the upper half plane
that transform “correctly” under an action of Γ ⊂ SL2(Z) on the upper half plane. The first
step is to describe this action.

1.1. The Action of SL2(Z) on the Upper Half Plane. Remember that the group
GL2(R) is the group of invertible two by two matrices with real entries. The group GL+

2 (R) :=
{γ ∈ GL2(R) : det(γ) > 0} acts on the upper half plane through linear fractional transfor-
mations.

Definition 2.1. For γ =

(
a b
c d

)
∈ GL2(R) and z in the upper half plane

H := {z ∈ C : Re(z) > 0} = {[z, 1] ∈ P1
C : Im(z) > 0}

we define the action of γ on z by

γz :=
az + b

cz + d
=

(
a b
c d

)
[z, 1].

With the usual conventions viewing ∞ as the point

(
1
0

)
, GL+

2 (R) acts on H ∪ ∞ with γ

sending ∞ to a
c

and −d
c

to ∞.

Because Im(γz) and Im(z) have the same sign, the upper half plane is stable under
GL+

2 (R) so this forms a well defined group action. The subgroup SL2(Z) of integer matrices
with determinant 1 acts through its inclusion in GL+

2 (R). The kernel of the map SL2(Z)→
Aut(H) contains the scalar matrices, so the action descends to an action of PSL2(Z) on H.
A fundamental domain for the group action is the region of the upper half plane pictured in
Figure 1. More precisely, if we let

S =

(
0 −1
1 0

)
T =

(
1 1
0 1

)
then the following theorem is true.

30
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Theorem 2.2. Let D be the subset of H with |z| ≥ 1 and |Re(z)| ≤ 1
2
. D is a funda-

mental domain for the action of SL2(Z) in the sense that

• For every z ∈ H, there exists a γ ∈ SL2(Z) such that γz ∈ D.
• If two distinct points z, z′ of D are congruent modulo SL2(Z), then Re(z) = ±1

2
and

z = z′ ± 1 or |z| = 1 and z′ = −1
z
.

Furthermore, PSL2(Z) is generated by S and T .

Figure 1. Fundamental Domain for SL2(Z)

Proof. The proof is not hard, and is Theorems 1 and 2 in Chapter 7 of Serre [25]. �

These groups also act on complex functions function defined on the upper half plane.

Definition 2.3. If γ ∈ GL+
2 (R), k is an integer and f a function H = {x + iy : x, y ∈

R, y > 0} → C, define

(f |kγ)(z) := det(γ)k/2(cz + d)−kf(γ · z).(4)

Example 2.4. If k = 0, then the functions fixed by the action of SL2(Z) are called
modular functions. Being fixed translates into the condition that for all γ ∈ SL2(Z)

f(γ · z) = f(
az + b

cz + d
) = f(z).

The j function associated with the Monster group is an example. Details are found in
Apostol [1].

1.2. Modular Forms for Congruence Subgroups. It is important to look at func-
tions which are invariant under the action of subgroups of SL2(Z) through the |k action. The
following congruence subgroups are the most important for understanding moonshine.

Definition 2.5. Let N be a positive integer. The following are known as congruence
subgroups of SL2(Z), of level N :
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Γ0(N) := {
(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N}

Γ1(N) := {
(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N, a ≡ d ≡ 1 mod N}

Γ(N) := {
(
a b
c d

)
∈ SL2(Z) : b ≡ c ≡ 0 mod N, a ≡ d ≡ 1 mod N}

By virtue of being subgroups of SL2(Z), these act on the upper half plane via fractional
linear transformations, and on the space of functions on the upper half plane by the |k
operators.

Just as in the case for SL2(Z), there exists a fundamental domain for this group action.
Since all of these subgroups are of finite index, the fundamental domain can be chosen so
that it is a finite union of translates (under SL2(Z)’s action) of the fundamental domain D.
The fundamental domain for Γ(2) is pictured in Figure 2. For more details, see Chapter III
section 1 of Koblitz [13].

Figure 2. Fundamental Domain for Γ0(2)

Definition 2.6. Let Γ be a congruence subgroup. Γ acts on H ∪ Q ∪ ∞ by viewing

Q ∪ ∞ as P1
Q ⊂ P1

C. In particular,

(
a b
c d

)
[r, s] = [ar + bs, cr + ds]. The orbits of Q ∪ ∞

under this action are called the cusps of Γ.

If Γ is a congruence subgroup of level 1 so Γ = SL2(Z)), there is only one cusp which
is customarily represented by ∞. For any pair of relatively prime integers p, q, there exist

r, s ∈ Z such that rp + sq = 1. Then the matrix

(
r s
−p q

)
has determinant 1 and sends q

p

to ∞. Thus every rational number is equivalent to ∞, so there is only one cusp.
The cusps for Γ0(p), with p a prime, are also important to understand. There are two

equivalence classes, represented by [1, 0] =∞ and [0, 1] = 0. A matrix

(
a b
c d

)
∈ Γ0(p) sends
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the point 0 to b
d
. Given relatively prime b and d, if d is not divisible by p then there is a

solution in integers to dx−bpy = 1. Thus 0 is in the same cusp as all rational numbers whose

denominator is not a multiple of p. A matrix

(
a b
c d

)
sends ∞ to a

c
, whose denominator is

a multiple of p. Any such relatively prime a, c can be obtained, for again there are solutions
to ax − cy = 1. These two equivalence classes are disjoint, for r

s
is sent to a fraction with

denominator cr + ds: if s is a multiple of p, then since c ≡ 0 (mod p) the new denominator
is a multiple of p as well. This argument generalizes to Γ0(N). The number of cusps, along
with representatives, are found in Section 2.4 of Iwaniec [12].

Proposition 2.7. The number of cusps of Γ0(N) is
∑

d|N ϕ((d, N
d

)) where ϕ is Euler’s
totient function.

Looking at Figure 2, the origin of the word cusp becomes clearer. 0 is visibly a cusp of
the boundary of the fundamental domain. If we picked a different fundamental domain for
SL2(Z) that approached the real axis instead of∞, a single cusp would appear there as well.
We now turn to the definition of modular forms.

Definition 2.8. Let Γ be a congruence subgroup of level N . A weakly meromorphic
modular form of weight k is a meromorphic function on H invariant under Γ acting by |k.

Example 2.9. The matrix

(
−1 0
0 −1

)
lies in Γ0(N), so any weakly meromorphic mod-

ular form must satisfy

f(z) = f(

(
−1 0
0 −1

)
z) = (−1)kf(z).

This forces f to be the zero function when k is odd. There can be forms of odd weight for
other congruence subgroups.

Example 2.10. If k = 2, then then the functions fixed by the action of SL2(Z) corre-
sponds to the condition that

f(γz) = (cz + d)2f(z).

If f(z)dz is an differential form on H invariant under the action of SL2(Z), elementary
calculus shows that f satisfies the same condition.

Example 2.11. We will prove later in Remark 2.40 that the function

∆(z) = q
∞∏
n=1

(1− qn)24(5)

where q = e2πiz is a weakly meromorphic modular form of weight 12 (in fact, it is holomor-
phic). If we expand the product, one obtains a q−expansion for ∆:

∆(z) = q − 24q2 + 252q3 + . . . =
∞∑
n=1

τ(n)qn

where τ(n) is called the Ramanujan τ function. See Serre [25] Chapter 7 section 4.5.

The fact that ∆ can be written as a power series in q = e2πiz is no accident. Note
that e2πiz is a holomorphic function mapping the upper half plane onto the punctured disk
Ω = {q ∈ C× : |q| < 1}. If e2πiz = e2πiz′ , then z − z′ ∈ Z. Let f be a meromorphic
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function like ∆ that satisfies f(z + 1) = f(z). Then there is a meromorphic function f̃ on

the punctured disk Ω = {z ∈ C : 0 < |z| < 1} such that f(z) = f̃(e2πiz). The point ∞
corresponds to origin. The Laurent expansion (if it exists) for f̃ gives the q−series expansion
(the Fourier expansion) for f . For f to be meromorphic or holomorphic at the cusp infinity

means that f̃ is meromorphic or holomorphic at 0. (This is exactly the definition of being
meromorphic or holomorphic obtained by viewing SL2(Z)\H ∪ {∞} as a Riemann surface.
However, it requires care to make this precise, especially for other congruence subgroups, so
this remains motivation only. This approach is taken in Shimura [26].)

A general congruence subgroup Γ of level N will not necessarily contain

(
1 1
0 1

)
, so a

weakly meromorphic modular form may not satisfy f(z+1) = f(z). However, it will contain(
1 N
0 1

)
, in which case it satisfies f(z + N) = f(z) and hence has a Fourier expansion in

powers of qN := e2πiz/N . However, we will only consider those cases when f has an integral
Fourier expansion. Furthermore,∞ need not be the only cusp. To talk about the other cusps,
one can simply transform them to ∞ using an element of SL2(Z) not in Γ and proceed as
before.

There are several important types of modular forms:

Definition 2.12. Let Γ be a congruence subgroup of level N and k a positive integer.

(1) A meromorphic modular form of weight k for Γ is a weakly meromorphic modular
form of weight k such that for each cusp and γ ∈ SL2(Z) that sends ∞ to the cusp,
the function f |kγ is meromorphic at infinity.

(2) Holomorphic modular forms are defined to be meromorphic modular forms holo-
morphic on the upper half plane and at the cusps. The term modular form without
qualification usually refers to holomorphic modular forms. The vector space of
modular forms of weight k for Γ is denoted by Mk(Γ).

(3) Cusp forms are modular forms that vanish at all cusps and are denoted by Sk(Γ).

Remark 2.13. Showing this concept is well defined, independent of the choice of γ is
straightforward and contained in Koblitz [13] Chapter III Section 3.

The most basic case occurs when Γ = SL2(Z). A modular form of weight k then is simply
a holomorphic function on H that satisfies the two transformational laws

f(z + 1) = f(z) and f(−1

z
) = zkf(z)(6)

By Theorem 2.2, these two conditions suffice to check that f is invariant under SL2(Z).
Furthermore, the function must be holomorphic at ∞, the only cusp. Since SL2(Z) contains

the matrix

(
−1 0
0 −1

)
, k must be even.

Being a modular form for Γ1(N) is often too weak a property. It is more interesting
to look at the subspace of Mk(Γ1(N)) that transform in a constrained way with respect to
Γ0(N).

Definition 2.14. Let N be a positive integer and χ a Dirichlet character modulo N . A

modular form f for Γ1(N) is in Mk(Γ0(N), χ) if f |kγ = χ(d)f where γ =

(
a b
c d

)
∈ Γ0(N).

Sk(Γ0(N), χ) is defined in the same way for cusp forms.
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1.3. Modular Forms as Functions on Lattices. It many cases, especially when
discussing Hecke operators, it is profitable and more natural to think of modular forms
as functions on lattices. This is approach is developed in Serre [25] and more generally
in Chapter 3, Section 5 of Koblitz [13]. A lattice Λ of C is simply the Z−linear span of
two linearly independent complex numbers ω1 and ω2. By convention, we always order the
generators so Im(ω1/ω2) > 0. The lattice spanned by ω′1 and ω′2 equals Λ if and only if
ω′1 and ω′2 are a Z-linear combination of ω1 and ω2 and vice verse. Thus the set of lattices
corresponds to pairs (ω1, ω2) such that Im(ω1/ω2) > 0 modulo the action of SL2(Z). If we
further identify Λ and zΛ for z ∈ C×, the map (ω1, ω2) → τ = ω1/ω2 gives a bijection
between equivalence classes of lattices and τ ∈ H modulo the action of SL2(Z) by fractional
linear transformation. Thus classes of lattices are in bijection with the fundamental domain
D for SL2(Z).

For each type of congruence subgroup, there are corresponding modular points.

• For SL2(Z), a modular point is a lattice.
• For Γ0(N), a modular point is a pair (Λ, C) where Λ is a lattice and C is a cyclic

subgroup of order N inside C/Λ.
• For Γ1(N), a modular point is a pair (Λ, t) where Λ is a lattice and t is a point of

order N in C/Λ.

If P is a modular point and c ∈ C×, then c · P is the modular point obtained by scaling
the lattice, subgroup, and vector by c. For example, for Γ0(N), cP = c(Λ, C) = (cΛ, c · C).

Given a column vector ω =

(
ω1

ω2

)
∈ C2 with ω1/ω2 in the upper half plane, the natural

way to associate a modular point is as follows:

• For SL2(Z), the modular point is Pω := Λω = ω1Z + ω2Z.
• For Γ0(N), the modular point is Pω := (Λω,Zω2/N).
• For Γ1(N), the modular point is Pω := (Λω, ω2/N).

A complex valued function F defined on modular points is of weight k if

F (cΛ) = c−kF (Λ).

Given such a function, one can define F̃ , a function on C2, by setting F̃ (ω) := F (Pω).

Furthermore, one can obtain a function on the upper half plane by taking f(z) := F̃ (

(
z
1

)
).

Proposition 2.15. Let k ∈ Z and Γ be a congruence subgroup of level N . The as-
sociation of F to F̃ to f gives a one-to-one correspondence between the following sets of
functions:

• Functions on modular points of weight k.
• Functions on column vectors which are invariant under the action of Γ and satisfy
F̃ (λω) = λ−kF̃ (ω).
• Functions on the upper half plane invariant under the action of Γ through |k.

Proof. Each type of modular point needs to be done separately. For Γ = SL2(Z), this
is more or less immediate. A function on lattices is simply a function on pairs of vectors that
serve as a basis for the lattice. The conditions on F̃ listed are precisely the conditions to be
a weight k function on the set of lattices. Identifying lattices to the fundamental domain for
SL2(Z) gives the third identification. More details and the other cases are in Koblitz [13],
Chapter 3 Proposition 31. �
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Example 2.16. For a lattice Λ and an even integer k > 2,∑
06=z∈Λ

z−k

is an absolutely convergent series and is easily seen to be a modular function on lattices of
weight k. Taking Λ to be the lattice spanned by 1 and z gives the definition of Eisenstein
series, a standard example of modular forms of weight k for SL2(Z).

Thus modular forms can also be viewed as functions on lattices (equivalently, as functions
on the space of elliptic curves). The lattice interpretations will make the definition of the
Hecke operators more natural.

1.4. Dimension Calculations. The space of modular forms of weight k forms a vector
space over C. It will be useful to understand the dimension of this vector space.

The simplest examples are for Γ = SL2(Z). If there is a modular form f0 of weight k that
is not a cusp form, any modular form g can be written as a linear combination of f0 and a

cusp form, for g − g(∞)
f(∞)

f has q−expansion with no constant term. Thus the dimension of

Mk(SL2(Z)) is one more than the dimension of Sk(SL2(Z)).
The transformation properties of a meromorphic modular form give considerable infor-

mation about its zeroes and poles. Denote the order of vanishing of f at a point p by vp(f).

If p = ∞, define it to be the order of vanishing of f̃ at the origin. Let wp be a weighting

factor that is 1 except when p = ρ = −1+
√
−3

2
or p = i, in which case it is 3 or 2 respectively.

(The factor wp arises based on the extra elements of SL2(Z) that fix the points ρ and i.)

Theorem 2.17. If f is a meromorphic modular form of weight k, not identically zero,
then

v∞(f) +
∑
p∈D

vp(f)

wp
=

k

12
(7)

Proof. The full details are contained in Serre [25] Chapter 7 Section 3. The idea is to
use Cauchy’s theorem from complex analysis, which relates the left hand side to a contour
integral around the fundamental domain. More precisely,

1

2πi

∫
C

df

f
=

∑
p∈D,p6=i,ρ

vp(f)

where C is the contour pictured in Figure 3. Evaluating the contour integral along each
piece of the boundary gives the desired result as the radius of the circular arcs goes to 0. If
there are zeroes or poles on the boundary, modify the contour to go around them in such a
way that the arcs match up under the action of SL2(Z). �

For SL2(Z), this theorem and elementary observations give enough information to com-
pletely determine dimensions of the space of modular forms. For example, if k = 12 then
any cusp form must have a simple zero at ∞ and no others. ∆(z) has this property, so
the ratio of any cusp form of weight 12 and ∆ is a modular function (of weight 0), and
hence a holomorphic function with no zeroes on the upper half plane union infinity. By basic
complex analysis, it must be a constant function, and hence all cusp forms of weight 12 are
multiples of ∆(z). The space of all modular forms of weight 12 is therefore 2 dimensional.
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Figure 3. Contour of Integration for Theorem 2.17

For other congruence subgroups, dimension calculations are significantly more compli-
cated. The following result, which can be obtained through evaluating an integral around
the fundamental domain for general congruence subgroups, is the simplest generalization.

Theorem 2.18. If f is a nonzero meromorphic modular form of weight k for a congruence
subgroup Γ0(N), and X0(N) is a fundamental domain for Γ0(N) (including the cusps), then∑

p∈X0(N)

vp(f)

wp
=
µk

12
.(8)

Here µ is the index of Γ0(N) in Γ0(1), which equals N
∏
p|N

(1 + p−1).

Proof. A proof is found in Rankin [21] as Theorem 4.14, which also fully explains the
conventions on the weighting factor wp. �

Corollary 2.19. If f, g ∈Mk(Γ0(N), χ) and the first µk
12

+ 1 terms of the q−expansions
agree, then f = g.
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Proof. The difference vanishes to order at least µk
12

+1 at∞. Since w∞ = 1, the equality
in Theorem 2.18 cannot hold so f − g is the 0 form. �

This corollary is crucial because it allows computations with modular forms to be reduced
to finite computations in linear algebra. To check whether an equality holds between two
expressions involving modular forms, it suffices to verify that enough coefficients of the
q−expansions agree.

However, this method does not easily give exact formulas for the dimension of the space of
modular forms for a congruence subgroup. An alternative approach is through understanding
the upper half plane modulo Γ0(N) as a Riemann surface as is done in Shimura [26] and
using the Riemann-Roch theorem. This computational result is taken from Ono [19].

Definition 2.20. Suppose k is an integer and χ is a Dirichlet character modulo N for
which χ(−1) = (−1)k. If p|N , let rp := vp(N) and sp the valuation of the conductor of χ.

Define the integer λ(rp, sp, p) by

λ(rp, sp, p) :=


pr
′
+ pr

′−1 if 2sp ≤ rp = 2r′

2pr
′

if 2sp ≤ rp = 2r′ + 1

2prp−sp if 2sp > rp

Define the rational numbers νk and µk by

νk :=


0 if k is odd
−1
4

if k ≡ 2 mod 4
1
4

if k ≡ 0 mod 4

µk :=


0 if k ≡ 1 mod 3

−1
3

if k ≡ 1 mod 3
1
3

if k ≡ 0 mod 3

Theorem 2.21. Using the above notation and the convention that
∏
p|N

runs over prime

divisors, and is 1 if the product is empty, it follows that

dimC(Sk(Γ0(N), χ))− dimC(M2−k(Γ0(N), χ)) =
(k − 1)N

12

∏
p|N

(1 + p−1)

−1

2

∏
p|N

λ(rp, sp, p) + νk

 ∑
x∈Z/NZ

x2+1≡0 mod N

χ(x)

+ µk

 ∑
x∈Z/NZ

x2+x+1≡0 mod N

χ(x)


Remark 2.22. If k > 2, then M2−k(Γ0(N), χ) is 0 dimensional. If k < 0, Sk(Γ0(N), χ)

is 0 dimensional. If k = 2, then M0(Γ0(N), χ) is 0 dimensional unless χ = 1, in which case
it is one dimensional: the only entire functions on the upper half plane are constants, and
unless χ = 1 the only constant satisfying the transformational law is 0.
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2. Hecke Operators

2.1. Definition and Elementary Properties. The Hecke operators are a family of
linear transformations that preserve spaces of modular forms. However, their definition
makes more sense when defined as a transformation of modular points.1 Let L denote the
vector space of formal, finite linear combinations of modular points. We are most interested
in the case Γ = Γ1(N), in which case a modular point is a lattice Λ and a point of order N
in C/Λ. The Hecke operators average a modular point over lattices of index n.

Definition 2.23. For a modular point (Λ, t) and positive integer n, define a linear
transformation T (n) : L → L by

(9) T (n)(e(Λ,t)) =
1

n

∑
Λ′

eΛ′,t

where Λ′ runs over all lattices of index n containing Λ such that t still has order N in C/Λ′.
This sum is finite, so the map is well defined, because any such lattice Λ′ must lie in 1

n
Λ.

Furthermore, if n is relatively prime to N , define S(n) : L → L by

(10) S(n)e(Λ,t) =
1

n2
e 1
n

Λ,t.

The relatively prime condition in the second definition ensures t still has order N in
C/ 1

n
Λ. It is relatively straightforward to understand the commutativity of these operators

using this definition in terms of modular points.

Proposition 2.24. For positive integers n1, n2, n and m:

(1) S(n1)S(n2) = S(n1n2) and S(n)T (m) = T (m)S(n).
(2) If (m,n) = 1, then T (m)T (n) = T (n)T (m) = T (mn).
(3) If p is a prime factor of N , then T (pl) = (T (p))l

(4) If p is relatively prime to N , then for l ≥ 2

T (pl) = T (pl−1)T (p)− pT (pl−2)S(p)

Proof. The first statement is immediate. The remaining three all follow from un-
derstanding the subgroup structure of Abelian groups. In the second, we need to show
T (nm)e(Λ,t) = T (m)T (n)e(Λ,t) by understandings the subgroups of 1

mn
Λ/Λ of size mn. Such

a subgroup corresponds to a lattice Λ′ containing Λ with index mn. In order for the or-
der of t to still be N in C/Λ′, the intersection with Zt ⊂ C/Λ must be trivial. Since
n and m are relatively prime, for every lattice Λ′ there is an intermediate lattice Λ′′ be-
tween Λ′ and Λ of indexes n and m respectively. This corresponds to an intermediate
subgroup S ′′ ⊂ S ′ ⊂ 1

mn
Λ/Λ. Conversely, suppose S ′′ = Λ′′/Λ ⊂ 1

n
Λ/Λ of order n and

S ′ = Λ′/Λ′′ ⊂ 1
m

Λ′′/Λ′′ is a subgroup of order m. If both have trivial intersection with Zt,
then Λ′/Λ is a subgroup of order mn with trivial intersection with Zt. Thus the modular
points occurring in T (mn)(e(Λ,t)) are the same as those appearing in T (m)T (n)(e(Λ,t)).

The thirds and fourth are similar: they are found as Proposition 32 of Chapter 3 of
Koblitz [13]. �

Sometime it is useful to have an explicit description of the lattices Λ′ that contain Λ with
index n.

1For an alternate treatment using double cosets, see Chapter 6 of Iwaniec [12].
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Lemma 2.25. Integer matrices of the form

(
a b
0 d

)
with ad = n, a ≥ 1, and 0 ≤ b < d

are in bijection with lattices Λ′ contained in Λ with index n. If ω1 and ω2 are a basis for the
lattice, then the correspondence sends(

a b
0 d

)
→
(
a

n
ω1 +

b

n
ω2

)
Z +

d

n
ω2Z.

Proof. This is an elementary fact about lattices. It is proven in Section 7.5 of Serre [25].
�

There is a third type of linear transformation of L. For d relatively prime to N , define
the map [d] to send e(Λ,t) to e(Λ,dt). Since d is relatively prime to N the order of dt is N in
C/Λ. Furthermore, the map only depends on d modulo N . Note that [d] commutes with
T (n) and S(m).

The maps T (n), S(m), and [d] are maps from L → L: they also give linear maps on the
vector space of complex valued functions on modular points. They preserve modular forms.

Proposition 2.26. With the notation as above, [d], T (n), and S(m) preserve Mk(Γ1(N)
and Sk(Γ1(N)). Furthermore, if χ is a Dirichlet character modulo N , then f ∈ Mk(Γ1(N))
is in Mk(Γ0(N), χ) if and only if [d]F = χ(d)F .

Proof. The transformation laws for modular forms correspond to the corresponding
functions on modular points being of weight k: that [d], T (n), and S(m) preserve the weight
is simple. Being holomorphic, and the behavior at the cusps, is more involved, and included
in the proof of Proposition 33 in Chapter 3 of Koblitz [13]. �

Furthermore, since [d] commutes with T (n) and S(m), these two operators preserve the
eignenspaces of [d], which correspond to Mk(Γ0(N), χ) (likewise Sk(Γ0(N), χ)) for a Dirichlet
character χ : (Z/NZ)× → C×. The eigenspace has associated eigenvalue χ(d).

Corollary 2.27. The operators T (n) and S(m) preserve the spaces Mk(Γ0(N), χ) and
Sk(Γ0(N), χ).

2.2. Hecke Operators in Terms of q-Expansions. Finally, we can finally look at
the Hecke operators in terms of the q expansion of a modular form. This is sometimes used
to defining them, but is unmotivated.

Proposition 2.28. Let f(z) ∈ Mk(Γ0(N), χ), with f(z) =
∑∞

n=0 anq
n. If p is prime,

then using the convention χ(p) = 0 if p|N and an/p = 0 if p 6 |n,

T (p)(f) =
∞∑
n=0

(apn + χ(p)pk−1an/p)q
n

More generally, it follows that

T (m)(f) =
∞∑
n=0

(
∑
d|(m,n)

χ(d)dk−1amn/d2)q
n

Proof. In the case that p is a prime, by definition T (p)f(z) =
1

p

∑
Λ′

F (Λ′,
1

N
). The

lattices Λ′ are those containing Λz = Zz+ Z1 with index p such that 1
N

has order N modulo
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Λ′. All such lattices contain 1
p
Λz which is spanned by z

p
and 1

p
. Any such Λ′ must be generated

by Λz along with a point a1z+a2

p
, where a1 and a2 matter only modulo p. In particular, there

is a distinct lattice Λ′ for each of the p + 1 pairs [a1, a2] in the one dimensional projective
space over Fp. If p 6 |N , all of the lattices still have 1

N
as a point of order N . The lattice

corresponding to [1, j] is L z+j
p

. The lattice corresponding to [0, 1] is 1
p
Lpz, as it is generated

by Lz and 1
p
. In this case

T (p)f(z) =
1

p

p−1∑
j=0

f(
z + j

p
) +

1

p
F (

1

p
Lpz,

1

N
).

But 1
p
F (1

p
Lpz,

1
N

) = pk−1F (Lpz,
p
N

). Using the operator [p] and Proposition 2.26, this is

pk−1χ(p)f(pz). Thus we have that

T (p)f(z) =
1

p

p−1∑
j=0

f(
z + j

p
) + χ(p)pk−1f(pz).

Collecting terms of the q−expansion, the coefficient of qn is apn + χ(p)pk−1an/p.
If p|N , then the lattice corresponding to [0, 1], generated by 1

p
and Lz, must be thrown

out. This removes the last term, but χ(p) = 0 when p|N . Thus the same formula holds.
The proof for T (n) is Proposition 39 of Koblitz [13], and follows from the case T (p). �

We can now talk about Hecke eigenforms. Since T (m) and T (n) commute for relatively
prime n and m, they preserve the other’s eigenspaces. Thus it makes sense to look for
modular forms that are eigenvectors for all of the T (n).

Definition 2.29. A Hecke eigenform is a (nonzero) modular form f ∈ Mk(Γ0(N), χ)
that is an eigenvector for all of the T (n), in other words for all n

T (n)f = λnf(11)

for some λn ∈ C. It is called normalized if the coefficient of q is 1.

In particular, any nonzero modular form in a one dimensional space of modular forms
must be a Hecke eigenform, for the Hecke operators preserve that space of modular forms.
For example, since S12(Γ0(1), 1) is one dimensional, ∆ must be a Hecke eigenform.

We have a large amount of information about coefficients of a q−expansion for Hecke
eigenforms.

Proposition 2.30. If f(z) ∈ Mk(Γ0(N), χ) is a Hecke eigenform with eigenvalues λn,
and f(z) =

∑∞
n=0 anq

n, then am = λma1. In addition, aman = amn for relatively prime m
and n.

Proof. Looking at the coefficient of q in T (m)f using Proposition 2.28, it is am. On
the other hand, the coefficient of q in λmf is λma1. But since for (n,m) = 1, T (n)T (m)f =
T (mn)f , it follows that λnλm = λnm and hence the coefficients an are multiplicative func-
tions. �

For example, this implies that because ∆(z) =
∑∞

n=1 τ(n)qn has τ(1) = 1, τ(n) = λn
and hence τ is a multiplicative function. Applying Proposition 2.28 gives information about
what happens when n and m are not relatively prime as well.
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Corollary 2.31. If f(z) ∈Mk(Γ0(N), χ) is a normalized Hecke eigenform of the form

f(z) =
∞∑
n=0

anq
n, then

anam =
∑
d|(n,m)

χ(d)dk−1amn/d2

2.3. The Fricke Involution. Another useful transformation is the Fricke involution.
It can be defined in terms of the action of a matrix in GL+

2 (Z) or in terms of modular points.
This material is discussed in Section 6.7 of Iwaniec [12].

Definition 2.32. Let N be an integer. The Fricke involution WN acts on complex valued

functions of weight k on the upper half plane via

(
0 −1
N 0

)
. Explicitly,

WNf = N−k/2z−kf

(
−1

Nz

)
.

It is immediate that W 2
N = (−1)k, hence this is called an involution. Note that WN

exchanges the cusp at 0 and the cusp at∞. Furthermore, WN normalizes Γ0(N) in the sense
that for γ ∈ Γ0(N), if

γ =

(
a b
c d

)
then γ′ = WNγW

−1
N =

(
d −c/N
−bN a

)
.

Then for f ∈ SK(Γ0(N), χ) and γ ∈ Γ0(N),

(f |kWN)|kγ = f |kγ′WN = χ(γ′)f |kWN

where χ(γ′) = χ(γ). Composing WN with the conjugation operator defined by f → f(−z)
gives WN which preserves the space of cusp forms.

Alternately, the Fricke involution can be described in terms of modular points for Γ1(N).
Consider the map defined by

WN : (ω1Z + ω2Z,
a

N
ω2)→ (ω1Z +

ω2

N
Z,

a′

N
ω1)(12)

where ω1/ω2 ∈ H and a′ is the inverse of a modulo N .

Lemma 2.33. The map WN : L → L defined above is well defined. If F : L → C
is the function on modular points associated to f ∈ Sk(Γ0(N), χ), WNf corresponds to
N−k/2F ◦WN .

Proof. This is well defined since given a modular point (Λ, t) Nt is a multiple of a
complex number ω2 (unique up to sign) that can be used to form a Z-basis for Λ. Then the
other basis vector ω1 is determined up to sign and addition of ω2. It is clear that adding ω2

doesn’t effect the image, and that because ω1/ω2 is required to be in the upper half plane
the choice of sign doesn’t matter either.

Now take the modular point Pz with ω1 = z ∈ H, ω2 = 1, and a = 1. By definition, f(z)

is F (Pz). WN(Pz) is defined to be (zZ +
1

N
Z,

z

N
). Factoring out a z,

F (WN(Pz)) = z−kF (Z +
1

Nz
Z,

1

N
)
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The lattice is spanned by 1 and −1
Nz

, with the negative sign introduced to make −1
Nz

in the
upper half plane. But by definition

F (Z +
−1

Nz
Z,

1

N
) = F (P−1

Nz
) = f(

−1

Nz
)

which agrees with Definition 2.32. �

Remark 2.34. WN commutes with scalar multiplication, while for f ∈ Sk(Γ0(N), χ)
F ([d](Λ, t)) = χ(d)F (Λ, t). Thus since WN sends SK(Γ0(N), χ) to Sk(Γ0(N), χ), it follows
that

WNF ((ω1Z + ω2Z,
a

N
ω2)) = χ(a)F (WN(ω1Z + ω2Z,

1

N
ω2)) = F (ω1Z +

1

N
ω2Z,

a′

N
)

which explains the strange inverse modulo N in the definition of WN .

This alternate description makes it clear that the Fricke involution almost commutes with
the Hecke operators.

Theorem 2.35. A Hecke eigenform f ∈ Sk(Γ0(N), χ) is also an eigenfunction of the
involution operator WN .

Proof. Using slightly more of the theory of modular forms than has been discussed
previously, this assertion can be reduced to checking that WNTn = χ(n)TnWN for n relatively
prime to N on the space of cusp forms Sk(Γ0(N), χ). By Lemma 6.25 of Iwaniec [12], if
two Hecke eigenforms have the same eigenvalues for all Tn with (n,N) = 1, then one is a
multiple of the other. Then if λ(n) are the eigenvalues of f with respect to Tn we have

TnWNf = χ(n)WNTnf = χ(n)λ(n)WNf = λ(n)WNf

using the fact that the conjugation operation commutes with the Hecke operators and that
χ(n)λ(n) is the eigenvalue λ(n).

To prove that WNTn = χ(n)TnWN for n relatively prime to N , we use Lemma 2.33 and
Definition 2.23 and the language of modular points. Let P = (Λ, t) = (ω1Z + ω2Z, sNω2),
and F be the function on modular points associated to a modular form f ∈ SK(Γ0(N), χ).
Since n and N are relatively prime, t will still be of order N in C/Λ′ for any lattice Λ′ that
contains Λ with index n. Thus we have that

nWNTn(F (P )) = WN

(∑
Λ′

F (Λ′,
s

N
ω2)

)
where Λ′ runs over lattices containing Λ with index N . By Lemma 2.25, all such lattices are

of the form
(
a
n
ω1 + b

n
ω2

)
Z + d

n
ω2Z for

(
a b
0 d

)
an integer matrix such that ad = n, a ≥ 1,

and 0 ≤ b < d. Thus this equals

χ(
n

d
)
∑
a,b,d

F

(
(
a

n
ω1 +

b

n
ω2)Z +

d

Nn
ω2Z,

s′

N
(
a

n
ω1 +

b

n
ω2)

)
Pulling the χ(d) inside using χ(d)F (Λ, t) = F (Λ, dt) for F ∈ Sk(Γ0(N), χ) gives

χ(n)
∑
a,b,d

F

(
(
a

n
ω1 +

b

n
ω2)Z +

d

Nn
ω2Z,

s′

N
(
ad

n
ω1 +

bd

n
ω2)

)
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On the other hand, applying Wn first gives

nTnWNF (P ) = nTnF (ω1Z +
ω2

N
Z,
s′ω1

N
) =

∑
a,b′,d

(
F (

a

n
ω1 +

b′

Nn
ω2)Z +

d

nN
ω2Z,

s′ω1

N

)
Identifying b with the b′ such that bN = b′ mod d identifies the lattices in the two sums.
Since ad = n and bds′

nN
ω2 is in the lattice, the two modular points agree as well. Thus

χ(n)TnWN = WNTn which completes the proof. �

The Fricke involution is useful because it exchanges the cusp at infinity and the cusp
represented by 0. It will explain a strange symmetry of the group M24.

3. Modular Forms with Complex Multiplication

In general it requires special care to show that any particular modular form is a Hecke
eigenform. However, for a class of modular forms that arise from imaginary quadratic fields,
called modular forms with complex multiplication (CM) it is easy to tell when they are Hecke
eigenforms.

Let K = Q
(√
−D

)
be an imaginary quadratic field with discriminant −D. Let OK be

its ring of integers, m a nontrivial ideal and Im be the group of fractional ideals relatively
prime to m.

Definition 2.36. A Hecke character is a group homomorphism φ : Im → C× such that
for all α ∈ K× with α ≡ 1 (mod m), φ satisfies

φ(αOK) = αk−1,

for some k ∈ Z with k ≥ 2.

Define a Dirichlet character χφ for n relatively prime to m by

χφ(n) := φ((n))/nk−1

which has modulus Nm.

Theorem 2.37. With the notation above, define

Φ(z) :=
∑

a

φ(a)qN(a) =
∞∑
n=1

a(n)qn,(13)

where N(a) denotes the norm of the ideal a and the first sum is over integral ideals a ⊂ OK
that are prime to m. Then Φ(z) is a cusp form in Sk(Γ0(|D| · N(m)),

(−D
·

)
χφ). If φ is a

primitive character, then f is a Hecke eigenform.

Proof. This is part of Section 12.3 of Iwaniec [12]. �

To define a Hecke character, it suffices to define it on a minimal set of generators for the
class group. Assume ±1 are the only units in Q

(√
−D

)
. Let π1, . . . , πm be a minimal set

of ideals whose ideal classes generate the class group. Let the order of πi in the class group
be ni. Given m, we must have φ((α)) = αk−1 if α ≡ 1 (mod m). Let χ be a character on
OK/m extended to OK that satisfies χ(−1) = (−1)k−1. First define φ on principal ideals
by φ((α)) = χ(α)αk−1. Since the only units in OK are ±1, this definition is independent
of the choice of generator, α. To extend φ to non-principal ideals, and thus obtain a Hecke
character, it suffices to define it on π1, . . . , πm and extend multiplicatively. By the above
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assumptions, πi is non-principal and πnii = (α) for some α ∈ K×. Thus φ(πi) must be one
of the nth

i roots of φ((α)) = αk−1χ(α). Fixing φ(πi) for each i gives the Hecke character.
Modular forms with complex multiplication are easy to work with, as the coefficients

of their q−expansion have explicit descriptions. Furthermore, one simple way to show a
modular form is a Hecke eigenform is to show it has complex multiplication.

4. Eta Products

4.1. The Eta Function and its Transformation Laws. The Dedekind eta function,
although not a modular form in the sense defined above, is still very important in constructing
examples of modular forms.

Definition 2.38. For z ∈ H, let q = e2πiz. Define the Dedekind eta function by

η(z) := q1/24

∞∏
n=1

(1− qn).(14)

Like modular forms, the Dedekind eta function satisfies simple transformational laws.
In the following, use

√
to denote the branch of the square root function with a branch cut

along the negative real axis that is positive for the positive reals.

Theorem 2.39. Let γ =

(
a b
c d

)
∈ SL2(Z) with c > 0. The Dedekind eta function

satisfies

η(z + 1) = eπiz/12η(z)

η(−1/z) =
√
z/iη(z)

η(γ · z) = ε(γ)
√
−i(cz + d)η(z)

where

ε(

(
a b
c d

)
) = exp (−iπα(

(
a b
c d

)
))

and, if (a, 6) = 1, the number α(

(
a b
c d

)
) satisfies

α(

(
a b
c d

)
) ≡ 1

12
a(c− b− 3)− 1

2
(1−

( c
a

)
) mod 2

Proof. Note that
(
c
a

)
in the last line is a Legendre symbol. The third statement includes

the first two. A proof of the general transformation rule is given after Theorem 3.4 of
Apostol [1]. This precise formulation comes from Ligozat [15], Section 3.1. �

Remark 2.40. The function ∆(z) defined in Example 2.11 is just the 24th power of
η(z). Raising the first and second transformation laws to the 24th power shows that ∆(z)
satisfies the transformation laws for a weight 12 modular form for the elements S and T
which generate SL2(Z).

Moonshine for M24 involves products of eta functions. Given a function r : Z→ Z with
r identically zero outside a finite set, consider the product

fr(z) :=
∏
d∈Z

η(dz)r(d)(15)
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We are interested in when this will be a well-behaved modular form.

Theorem 2.41. Let N be a positive integer. For d a divisor of N , denote N/d by d′.
Let r be a function taking on non-negative values on divisors of N and 0 elsewhere. Suppose
k = 1

2

∑
d|N r(d) ∈ Z. If∑

d|N

r(d)d′ ≡ 0 mod 24 and
∑
d|N

r(d)d ≡ 0 mod 24(16)

then f(z) :=
∏
d|N

η(dz)r(d) satisfies

f(

(
a b
c d

)
z) = χ(d)(cz + d)kf(z)

for

(
a b
c d

)
∈ Γ0(N), where χ is a quadratic (possibly trivial) Dirichlet character.

Remark 2.42. There is an analogous result where r takes on integer values, resulting in
a quotient of eta functions.

Remark 2.43. The two conditions (16) are saying that f(z) and WNf(z) have integral

Fourier expansions as the q
1
24 in the eta product have combined. These conditions are

certainly necessary for f to be in Mk(Γ0(N), χ).

Proof. The proof generalizes proposition 3.1.1 in Ligozat [15]. Let γ =

(
a b
Nc d

)
be

an element of Γ0(N). Then

η(δUz) = η(Uδδz) where Uδ =

(
a bδ
cδ′ d

)
by the definition of the action on H. Thus

(17) f(Uz) = (−i(Ncz + d))
1
2

P
δ|N rδ · f(z) ·

∏
δ|N

ε(Uδ)
rδ

using the transformation law in Theorem 2.39. To calculate the third factor, we can assume
that (a, 6) = 1 and c > 0. Because such matrices generate Γ0(N) (Ligozat [15] section 3.1),
this suffices. However, ∏

δ|N

ε(Uδ)
r(δ) = exp (−iπλ)

where λ is the sum
∑
δ|N

r(δ)α(Uδ). By Theorem 2.39,

α(Uδ) ≡
a

12
((cδ′ − bδ − 3))− 1

2
(1−

(
cδ′

a

)
) mod 2

and hence

λ ≡ ac

12
(
∑
δ|N

r(δ)δ′)− ab

12
(
∑
δ|N

r(δ)δ)− a

4

∑
δ|N

r(δ)− 1

2

∑
δ|N

(1−
(
cδ′

a

)
)r(δ) mod 2
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By hypothesis, this simplifies as

λ ≡ 0− 0− ak

2
− 1

2

∑
δ|N

r(δ)(1−
(
cδ′

a

)
) mod 2.

Because exp (1
2
πi(1−

(
cδ′

a

)
)) =

(
cδ′

a

)
, it follows that∏

δ|N

ε(Uδ)
r(δ) = exp (−iπλ) = exp (−iπak/2)

(
c2k

a

)∏
δ|N

(
δ′

a

)r(δ)
The first term in 17 simplifies as (−i)k(Ncz + d)k, so

f(Uz) = exp (−iπk/2)(Ncz + d)kf(z) exp(−iaπk/2)
∏
δ|N

(
δ′

a

)r(δ)
But χ(d) := exp(− iπk

2
(1 + a))

∏
δ|N
(
δ′

a

)r(δ)
is a quadratic character as required, as ad = 1

mod N .
�

4.2. Eta Products that are Hecke Eigenforms. When looking at moonshine for
the Mathieu groups, the interesting eta products are also Hecke eigenforms. The simplest
way to ensure this is to have the eta product lie in a one dimensional space of cusp forms.
Because the Hecke operators will preserve this space, any cusp form is automatically a
Hecke eigenform. Mason uses this idea to find eta products of even weight that are Hecke
eigenforms [17].

If a nonzero eta product is to be a cusp form and Hecke eigenform, it must vanish to
order 1 at the cusp at infinity. If not, then the coefficient of q must be 0, in which case all
the coefficients in the q−expansion will be 0 by Proposition 2.30. Since the Fricke involution
preserves this one dimensional space of eigenforms, it must vanish to order 1 at the cusp 0
as well. In particular, this means that∑

d|N

r(d)d = 24 and
∑
d|N

r(d)d′ = 24.

Let N be a positive integer, k the weight, and ε a quadratic character modulo N (possibly
the trivial character). Setting

µ := |Γ0(1) : Γ0(N)| = N
∏
p|N

(1 + p−1),

Theorem 2.18 shows that ∑
z∈X0(N)

ordz(f) =
µk

12

Furthermore, we know there are c(N) =
∑

d|N φ(d, N
d

) cusps. Suppose f is a cusp form and
the order of vanishing at each cusp is an integer as happens when ε is trivial and k ≥ 2 is
even [17]: then if

c(N) =
µk

12
then f must vanish to order 1 at each cusp and vanish nowhere else. Hence the space of all
cusp forms is one dimensional.
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Given these conditions, it is straightforward to calculate all eta products that are Hecke
eigenforms for this reason. They are listed in Table 1: the notation 12112 means the eta
product η(z)2η(11z)2.

v

Table 1. Eta Products that are Hecke Eigenforms, even weight and trivial character

N k f
1 12 124

2 8 1828

3 6 1636

4 6 212

5 4 1454

6 4 12223262

8 4 2444

9 4 38

N k f
11 2 12112

14 2 1 2 7 14
15 2 1 3 5 15
20 2 22102

24 2 2 4 6 12
36 2 64

27 2 3292

32 2 4282

To illustrate, suppose N = pr. Then the number of cusps is for Γ0(N) is
r∑

n=0

ϕ(pmax(n,r−n)) ≤ 2(1 + p+ . . .+ p[r/2])

≤ 2(
p[r/2]+1 − 1

p− 1
) ≤ 4p[r/2]

On the hand, µ = pr(1 + p−1) = pr + pr−1 and k must be at least 2. But

4p[r/2] <
pr + pr−1

6
whenever r ≥ 10 (and p is at least 2) or whenever p ≥ 24 (and r is at least 1). Thus for
equality to possibly hold r < 10 and p < 24. This leaves a finite number of cases to check.

For example, one case equality holds is when p = 11 and r = 1. By Theorem 17,
f(z) = η(z)2η(11z)2 lies in M2(Γ0(11), 1). f(z)12 = ∆(z)∆(11z), which is known to be in
S24(Γ0(11)). Furthermore, it is manifestly nonzero on the upper half plane. At the cusp

infinity, f(z)12 has a q−expansion q12

∞∏
n=1

(1− qn)24(1− q11n)24, so has a zero of order 12 at

∞. The action of S =

(
0 −1
1 0

)
sends the cusp 0 to ∞. Note that

f(z)12|24S = z−24∆(−11/z)∆(−1/z) = 11−12∆(z)∆(z/11)

has a zero of order 12 at the cusp based on its q-expansion.
By the dimension formula, there is a nonzero element g ∈ S2(Γ0(11), 1) with a zero of

order 1 at each cusp. Then (g/f)12 is a modular function for Γ0(11) which is nonzero on the
upper half plane. Furthermore, it is non-vanishing at the two cusps, which implies that it is
a nonzero entire function and hence constant. Thus f is a multiple of g, so η(z)2η(11z)2 is
in S2(Γ0(11)) and hence is a Hecke eigenform.

Comparing Table 1 with Table 7 gives the first hint of the moonshine that will be discussed
in the next chapter.



CHAPTER 3

Moonshine For M24

This chapter will present the moonshine theory for the Mathieu group M24, relating eta
products and the cycle shapes of elements of M24. By analogy with monstrous moonshine,
there is an infinite dimensional graded module that explains an infinite family of virtual
characters that are multiplicative functions of their index. These ideas go back to G. Mason’s
papers [16] and [17].

1. M24 and Hecke Eigenforms

The first hint of a connection between the Mathieu group M24 and modular forms appears
in Tables 1 and 7. Mason noticed in [17] that for all but the last two modular forms in Table
1, the shape of the eta product appears as the cycle shapes of elements in M24. Furthermore,
the level and weight of the modular form can be predicted from the cycle shape.

Definition 3.1. For an element g ∈ M24, of cycle shape 1r(1) . . . 24r(24), define

fg(z) =
24∏
d=1

η(dz)r(d).

Define k(g) to be half of the number of cycles of g and N(g) to be the product of the
lengths of the longest and shortest cycles.

All of the elements of M24 with k(g) even correspond to eta products in Table 1. The
other conjugacy classes in M24 similarly correspond to modular forms.

Theorem 3.2. For each g ∈ M24, fg(z) is a cusp form and a Hecke eigenform, with
weight k(g), level N(g), and nebentypus character εg. If the weight k(g) is even, εg = 1,
otherwise εg is a quadratic character.

Proof. This is already done following Mason’s argument for elements of even weight:
they are cusp forms and Hecke eigenforms because the space of cusp forms the eta product
land in are one dimensional. For the elements of odd weight, routine calculation with Theo-
rem 2.41 again shows that they lie in Sk(g)(Γ0(N(g)), εg), where εg is a quadratic character.
To show that these are Hecke eigenforms, for k(g) > 1 the dimension formula Theorem 2.21
also shows that the space of cusp forms they lie in is one dimensional.

For k = 1, the spaces may no longer be one dimensional. However, they are still Hecke
eigenforms. One strategy is to check directly, but a nicer approach taken in [8] is to notice
that the three eta products η(z)η(23z), η(3z)η(21z), η(12z)2 agree for a sufficient number
of terms in their q−expansion with modular forms with complex multiplication, which are
known to be Hecke eigenforms by Theorem 2.37. The specific number fields and information
about the Hecke characters are indicated in Table 1. The exact number of coefficients to
compare is given in Corollary 2.19.

�
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Table 1. A few Hecke Characters giving eta products.

η-product Number Field m Order of the Character
η(z)η(23z) Q(

√
−23) 1 2

η(3z)η(21z) Q(
√
−7) (3) 4

η(12z)2 Q(
√
−1) (6) 4

Remark 3.3. In Dummit, Kisilevsky, and McKay [8], all eta products that are also
cusp forms and Hecke eigenforms are found. By the reasoning in Section 4.2, the order of
vanishing at ∞ must be 1, which means that the in the product

η(z)r(1)η(2z)r(2) . . . η(tz)r(t)

it must hold that
∑
d

d · r(d) = 24. A computer can find all of the partitions of 24 that do

not correspond to multiplicative eta products, and then the 30 remaining can be proven to
be eigenforms using the techniques presented here.

Remark 3.4. As with all instances of moonshine, the reason for the appearance of the
group M24 is murky. It may not even have anything to do with M24 being a sporadic simple
group and connected to the monster: instead, it may be a result of the 24 dimensional
representation of M24. Voskresenskaya [28] shows that for all groups of order 24, the eta
products associated to the cycle shapes from the regular representation are multiplicative
eta products. On the other hand, Dummit, Isilevsky and McKay [8] showed that of the
conjugacy classes of S24, only 30 give multiplicative eta products.

2. Representations and Multiplicative eta products

The original observations about monstrous moonshine relating coefficients in the q-
expansion of the j−function to the irreducible representations of the monster are generalized
and explained (at least, partially explained) through the existence of an infinite dimensional
graded module, as alluded to in the introduction. There is a similar representation lurking
for M24.

2.1. A Family of Multiplicative Virtual Characters. Expanding the eta products
associated to elements of M24, the coefficients give class functions for M24.

Definition 3.5. For g ∈ M24, write

fg(z) =
∞∑
n=1

ag(n)qn.

For any fixed positive integer n, define

γn(g) := ag(n)

It is clear that γn is a class function. Furthermore, because all of the eta products
associated with elements of M24 are Hecke eigenforms, it is clear that

Corollary 3.6. For positive integers n and m with (n,m) = 1, it is true that

γnγm = γmn

In other words, the γn form a multiplicative family of class functions.



2. REPRESENTATIONS AND MULTIPLICATIVE ETA PRODUCTS 51

The γn cannot be characters for M24 since the dimension of a representation cannot be
negative, and ∆(z) = q − 24q2 + 252q3 − 1462q4 + . . . corresponds to the identity element.
However, the γn are virtual characters. The following proof is due to Mason [16].

Theorem 3.7. For all positive integers n and all irreducible characters χ of M24, (γn, χ) ∈
Z. In other words, γn is a virtual character.

For any specific n, this can be verified by simply evaluating the inner product with full
knowledge of the character table from the atlas. More generally, to check that (γn, 1) ∈ Z
for all n at once would be a significant step. This requires that |M24 | divides

∑
g∈M24

γn(g)
for all n. This can be interpreted as the coefficient of qn in the expression

1

|M24 |
∑
g∈M24

fg(z) =
1

|M24 |

∞∑
n=1

( ∑
g∈M24

an(g)

)
qn.(18)

If the average of fg(z) over M24 lies in Z[[q]], then part of the theorem is proven. Such
a statement is plausible, since there are similar combinatorial statements like Burnside’s
lemma (the average over a finite group of the number of points fixed by a group action is
equal to the number of orbits). In fact, this suggests that such a statement might not be
unique to M24, but hold for any group acting on a finite set.

Theorem 3.8. Let G be a finite group with a fixed permutation representation. For
g ∈ G, of cycle shape 1r(1)2r(2) . . . N r(N), define

fg(z) =
N∏
d=1

η(dz)r(d) = qr
∞∑
n=1

γn(g)qn.

Then the average

ζ(G, η) :=
1

|G|
∑
g∈G

fg(z)

has integer coefficients. In particular, for any n

(γn, 1G)G ∈ Z

Assuming this theorem, the specific result for M24 follows. First, M24 embeds in S24, and
the characters γn for M24 and S24 agree on M24. If γn is a Z−linear combination of irreducible
characters of S24, then since any character of S24 restricts to a character of M24 γn is a
Z−linear combination of irreducible characters of M24. Thus it suffices to check that (γn, χ) ∈
Z for all irreducible characters of Sn. But all such characters are Z−linear combinations of
transitive permutation character by Proposition 1.14, so χ =

∑
i ai IndSnHi(1Hi) where the Hi

are subgroups of S24. By Frobenius reciprocity, (γn, IndSnHi(1Hi))Sn = (γn, 1Hi)Hi which is an
integer by Theorem 3.8. This implies (γn, χ) ∈ Z, and hence that γn is a virtual character
of M24.

To prove Theorem 3.8, we use a generalization of Burnside’s lemma known as Pólya’s
Theorem. Let G be a finite group of permutations of the set D, with |D| = N , and let
y1 . . . yn be indeterminates. The cycle index is defined to be

(19) ζ(G) =
1

|G|
∑
g∈G

N∏
i=1

y
r(i)
i
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where g ∈ G has cycle shape 1r(1) . . . N r(N). For a power series f(t) ∈ Z[[t]], define

(20) ζ(G, f) =
1

G

∑
g∈G

N∏
i=1

f(ti)r(i)

which is an evaluation of the cycle index at the power series.
Furthermore, for another finite set R and a weight function w : R → A where A is a

commutative ring, define F to be the set of all functions D → R and O to be the set of
orbits of G acting on F via (gf)(d) = f(gd). Define the weight of a function to be

(21) w(f) =
∏
d∈D

w(f(d)).

This is constant on classes of O. Define another variant of the cycle index ζ(G,w) by
replacing each yi by

∑
r∈R w(r)i.

Theorem 3.9 (Pólya). With the notation as above, we have that

(22) ζ(G,w) =
∑
F∈O

w(F )

This has the same spirit of Burnside’s theorem, for it says that a weighted sum of the
number of orbits equals an average of weights. A proof will be given in Section 2.2. Pólya’s
Theorem is the key ingredient in the proof of Theorem 3.8.

Proof. To show that ζ(G, η) has integer coefficients, it suffices to show that the coeffi-
cients are algebraic integers, since they are certainly rational numbers. For any fixed positive
integer d, to show that the first d coefficients are integers it suffices to consider the expression

fd(q) :=
1

|G|
∑
g∈G

fdg (z)(23)

where fdg is a product obtained by replacing the infinite product for eta with the finite product
involving only terms up to degree d − 1. Suppose there exist an integer b and elements
gk(q) ∈ C[q], 1 ≤ k ≤ b, such that gk(q) has algebraic integer coefficients for 1 ≤ k ≤ b

and
∑b

k=1 gk(q)
e = fd(q

e) for 1 ≤ e ≤ N . Define a function w : {1, . . . , b} → C[z] by
w(k) = gk. Then using Pólya’s Theorem, since the coefficients of

∑
F∈O w(F ) are all algebraic

integers it follows that the coefficients of ζ(G,w) are also algebraic integers. However, since∑b
k=1 gk(q)

e = fd(q
e),

ζ(G,w) =
1

|G|
∑
g∈G

N∏
i=1

(
b∑

k=1

gk(q)
i)r(i)

=
1

G

∑
G

N∏
i=1

fd(t
i)r(i)

= ζ(G, f)

as desired. This holds for any d, so all the coefficients are rational numbers and algebraic
integers and hence lie in Z.

It remains to construct the gk. If such gk exist for each monomial ciq
i in a polynomial,

the collection of all such gk work for the whole polynomial. For a monomial ciq
i with ci > 0,
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take b = ci and g1 = . . . gb = qi. If ci < 0, take a prime p > N and let λ be a primitive pth
root of −ci. Take b = p− 1 and gk(q) = λkqi. Furthermore, for 1 ≤ e ≤ N ,

p−1∑
k=1

gk(t)
e = (

p−1∑
k=1

λke)qe·i = ciq
e·i

as desired. Thus such gk always exist and the proof is complete. �

Remark 3.10. The phenomena of the coefficients of eta products giving virtual char-
acters is not special to M24. In his paper on frame-shapes [16], Mason shows that for any
association of elements of a finite group to eta products based on cycle shapes of any permu-
tation representation, the coefficient of qn in the q−expansion is a virtual character. There
is also nothing special about the eta function: a similar argument works for any power series
in q. The proof is essentially the same.

2.2. A Proof of Pólya’s Theorem. The following proof of Pólya’s Theorem uses the
notation from the previous section, and follows the proof presented in Bruijn [6].

Burnside’s lemma says that the number of orbits |O| is the average over G of the number
of functions fixed by a permutation g ∈ G. Furthermore, the number of orbits with weight
ω is given by

1

|G|
∑
g∈G

sω(g)

where sω(g) is the number of functions of weight ω fixed by g. Summing over all possible
weights gives all orbits, so∑

f∈O

w(f) =
∑
ω

ω
1

|G|
∑
g∈G

sω(g) =
1

|G|
∑
g∈G

∑
ω

ωsω(g)

If g has cycle shape 1l(1)2l(2) . . . nl(n), then if g fixes a function the function must be constant
on every cycle of g. The permutation divides D into a collection of disjoint components, on
which the function must be constant. Labeling these components by D1 . . . Dk, we will show
that ∑

f=gf

w(f) =
k∏
i=1

∑
r∈R

w(r)|Di|.

To prove this, consider expanding the product: picking a term in the expansion is the same
as picking a mapping of {1, 2, . . . , k} to R, and the value of the term in the expansion is the
weight of the function interpreted as a function from D to R, constant on each component.
Therefore it follows that∑

ω

ωsω(g) =
∑

f∈F,gf=f

w(f) =
k∏
i=1

(
∑
r∈R

w(r)i)l(i)

Averaging over g ∈ G gives

ζ(G, f) =
1

G

∑
g∈G

k∏
i=1

(
∑
r∈R

w(r)i)l(i) =
1

|G|
∑
g∈G

∑
ω

ωsω(g) =
∑
f∈O

w(f).

This completes the proof.
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3. The Moonshine Module

The family of virtual characters associated to M24 through eta products suggests that
there should be a “natural” infinite dimensional virtual graded module V such that

V =
⊕
n≥1

Vn and tr(g|Vn) = γn(g)

The existence of such a virtual module is equivalent to the fact that the γn are virtual
characters. The content of this assertion is that the virtual module V should have an
independent description.

This is similar to the theory of moonshine for the monster group discussed in the intro-
duction, in which it was possible to prove the existence of a module satisfying the moonshine
conjectures without constructing it. There was a conjectured construction, but it was far
from clear that it satisfied the moonshine conjectures. Proving the equivalence, which shed
a bit of light on why the moonshine conjectures are true, was the heart of Borcherd’s work.

Happily, the module associated to M24 is easier to construct.
Let M be the standard 24−dimensional permutation representation of M24. Represent

a partition λ of n by (λ1, λ2, . . . , λn) of n where λk is the number of times k appears in the
partition. Being a partition means that

∑n
k=1 kλk = n. Denote λ being a partition of n by

λC n. Define
σ(λ) := (−1)

Pn
k=1 λk

and define

Mλ :=
n⊗
k=1

Λλk(M)

where the product is taken in the Grothendieck ring of finite dimensional representations of
M24.

Theorem 3.11. Let V be the infinite dimensional graded virtual module

V = ⊕Vn where Vn =
∑

λC (n−1)

σ(λ)Mλ.(24)

V explains the family of characters γn in the sense that for g ∈ M24

tr(g|Vn) = γn(g).

It will be convenient to think about graded modules as being represented as a power
series, with the coefficient of qn being the nth graded piece. The ring formed is isomorphic
to R[[q]], where R is the Grothendieck ring of C[G] modules. This ring is naturally isomorphic
to (C[G]) [[q]], the power series ring over the ring of class functions. The isomorphism is given
by associating to each virtual module its virtual character.

Suppose that for a power series h ∈ Z[[q]], the characters defined for g ∈ M24 of cycle
shape g = 1r(1) . . . (24)r(24) by

hg(q) :=
N∏
i=1

h(qi)r(i) =
∑
n≥0

γhn(g)qn(25)

are virtual characters. Then h determines an element of R[[q]]. Denote it by ı(h). It is
straightforward to verify that ı(h1)ı(h2) = ı(h1 · h2). This will let us prove the theorem.
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Proof. Consider the case of h(q) = 1− q. We know that

hg(q) =
N∏
i=1

(1− qi)r(i)

The factor (1− ti) is the characteristic polynomial of an i cycle acting on an i dimensional
vector space by permutation, so the right side is simply

∏
λ(1 − λq) where λ runs through

the eigenvalues (with multiplicity) of the action of g. Therefore the coefficient of qn is
simply (−1)n times the nth elementary symmetric polynomial evaluated on the eigenvalues
of g. However, we know that the character of Λn(M) evaluated at g is the nth elementary
symmetric polynomial evaluated on the eigenvalues of g by Proposition 1.3. Thus it follows
that

ı(1− q) =
24∑
n=0

(−1)nΛn(M)qn

Similarly, it follows that

ı(1− qk) =
24∑
n=0

(−1)nΛn(M)qtk.

But then

ı(
∞∏
k=1

(1− qk)) =
∞∏
k=1

(
24∑
n=0

(−1)nΛn(M)qnk) =
∞∑
k=0

(∑
λCk

σ(λ)Mλ

)
qk

where it makes sense to talk of the infinite product because the coefficient of qn depends
only on ı(1− qk) for k ≤ n. The characters associated to ı(

∏∞
k=1(1− qk)) are by definition

∞∑
n=1

γn−1q
n

with the index offset because the q1/24 is not included in the infinite product. This shows
that tr(g|Vn) = γn(g). �

Remark 3.12. This provides an independent proof of the fact that the γn are virtual
characters of M24 by explicitly finding the virtual module producing them. Mason does
this in more generality, showing that for any power series h with constant term 1 and
any representation of a group, the class functions γhn defined in terms of the frame shape

g =
∏N

i=1 i
r(i) by

hg(q) =
N∏
i=1

h(qi)r(i) =
∑
n≥0

γhn(g)qn

can be expressed in terms of symmetric and exterior powers of the representation of the group.
In this generality, the characters are only rational characters, not virtual characters [16].

The fact that all of the fg are Hecke eigenforms shows that this family of representations
has the unusual property of being multiplicative.

Corollary 3.13. For n and m relatively prime integers,

Vn ⊗ Vm ' Vnm

Proof. The characters of both sides are γnγm and γnm by definition. By Corollary 3.6,
these are equal, which implies the representations are equal. �
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4. Number Theory Explaining M24

Having established this correspondence between the representation theory of M24 and
modular forms, the natural next step is to attempt to use number theory to understand
M24 and its representation theory. One of the original “accidents”, presented in Conway
and Norton [18] and apparent in Table 7, that led to investigations of moonshine is that
for g ∈ M24 of cycle shape 1r(1) . . . 24r(24), these exists an N such that r(m) = r(N/m) for
m ≤ N . The bridge between M24 and the theory of modular forms explains this symmetry.

Recall that the Fricke involution WN is given by the matrix

(
0 −1
N 0

)
. Although WN

is not in Γ0(N), the Fricke involution does preserve the space of cusp forms. In particular,
any Hecke eigenform is a eigenfunction for WN . Now suppose that

f(z) =
∏
d

η(dz)r(d)

is a Hecke eigenform in Sk(Γ0(N), χ). In particular, this means that all of the d with r(d) 6= 0
divide N and the hypotheses of Theorem 2.41 are satisfied.

Applying the Fricke involution,

Wnf = N−k/2z−kf(
−1

Nz
) = N−k/2z−k

∏
d

η(− d

Nz
)r(d)

= N−k/2z−k
∏
d

√
(N/d)(z/i)

r(d)
η(
Nz

d
)r(d)

= c
∏
d

η(dz)r(
N
d

)

using Theorem 2.39. In order for this to be a scalar multiple of f(z), r(d) must equal r(N/d)
when r(d) 6= 0. Using the correspondence between cycle shapes in M24 and Hecke eigenforms,
the cycle shapes must be symmetric as well.

5. Representation Theory Explaining Number Theory

It is also possible to use the description of this virtual module to analyze Ramanujan’s
τ function. Recall that it is defined to be the coefficients of ∆:

∆(z) := η(z)24 =
∞∑
n=1

τ(n)qn(26)

Some general information about τ(n) is contained in Chapter 7, section 4.5 of Serre [25].
One surprising fact about τ(n) is that it satisfies congruences modulo powers of the primes
2, 3, 5, 7, 23, and 691. For example, Wilton proves that

τ(n) ≡


0 mod 23 if

(
n
23

)
= −1

2 mod 23 if n = u2 + 23v2 for u, v ∈ Z6=0

−1 mod 23 otherwise

.(27)

by a relatively elementary argument [29]. A list of all of these congruences (along with an
explanation along a totally different line) is found in Swinnerton-Dyer [27].

The formula for Vn in Theorem 3.11 suggests there should be a congruence for τ(n)
modulo 23. The coefficients of τ(n) arise from the identity element of M24, and the dimension
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of Λr(M) is
(

24
r

)
, which is congruent to 0 modulo 23 for r 6= 0, 1, 23, 24. Since so many terms

disappear, it is natural to look for a congruence modulo 23. Since for r = 0, 1, 23, 24 we have
dim(Λr(M)) = 1 mod 23,

τ(n) =
∑

λC′n−1

σ(λ) mod 23(28)

where the partition runs only over λ with all of the λi = 0, 1, 23, 24.
Define a(n) to be the number of partitions of n into an even number of distinct parts

minus the number of of partitions of n into an odd number of distinct parts. The pentagonal
number theorem, appearing as equation (3.1) of Wilton [29], states that∏

n

(1− qn) =
∑
n

a(n)qn =
∑
n∈Z

(−1)nq
1
2
n(3n+1).(29)

A partition of n − 1 into parts where each part occurs 0, 1, 23 or 24 times is the same as
selecting numbers that sum to h, taking 23 of each of them, and then picking a partition of
n− 1− 23h into distinct parts. Since 23 is odd, the number of parts arising from selecting
23h elements is the number of elements picked that sum to h. Thus (28) gives that

τ(n) = a(n− 1) + a(1)a(n− 24) + . . .+ a(h)a(n− 1− 23h) mod 23

where h = [n−1
23

]. We know that a(n−1−23i) = 0 by the pentagonal number theorem unless

n− 1− 23i = 1
2
m(3m± 1) for some m ∈ Z. Simplifying this equation modulo 23,

n− 1 =
1

2
m(3m± 1) mod 23

n− 1 = 12(3m2 ±m) mod 23

n = (6m± 1)2 mod 23

Thus if n is not a quadratic residue modulo 23, τ(n) ≡ 0 mod 23.
This method of obtaining the congruence modulo 23 is no more and no less than a

disguised version of the proof Wilton gives using generating functions. The fact that the
only partitions that contribute to τ(n) mod 23 are those that use each integer 0, 1, 23 or 24
times corresponds to decomposing the generating function

∆(q) = q
∞∏
n=1

(1− qn)24 = q
∏
n=1

(1− qn)
∞∏
n=1

(1− q23n) mod 23

The coefficients of
∏∞

n=1(1 − qn) are precisely the a(n), and Wilton invokes the pentagonal
number theorem for the same purpose. The point of using the M24 module V is that it
provides an explanation for why there should be a congruence modulo 23: because almost
all of the dimensions of the exterior powers of M vanish modulo 23.

The spirit of moonshine is that there is a connection between the representations of the
finite sporadic simple groups connected with the Monster group and certain types of modular
forms. For M24, conjugacy classes correspond to eta products based on cycle shape. For the
Monster group, its module gives a correspondence between conjugacy classes and certain
Hauptmodul. This connection allows number theory and representation theory to interact,
explaining the balanced cycle shapes of M24 in terms of Fricke involutions and allowing
the description of the graded virtual module V in terms of the exterior algebra to explain
congruences of the τ function. Despite the connection illuminating these issues, there is still
no satisfactory answer to why these groups are involved, and why moonshine is monstrous.
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