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1 Introduction

The term recursively enumerable set has its roots in logic but today is most commonly seen in
reference to the theory of Turing machines. The Turing machine model is conceptually a very
simple one for an abstract computing device but has been proved to be so powerful that many
believe that that which is “computable” or “recursive” in any reasonable sense of the word is
computable by some Turing machine; this is commonly known as Church’s Thesis.

For the purposes of our discussion, we need only sketch the model: A Turing machine consists
of an infinite tape with discrete “squares,” and a read/write head that can move left and right
along the tape as well as read and write symbols in the squares on the tape. The rules that the
head is allowed to use can only direct it to either write a new symbol on the tape or move precisely
one square to the left or right. A Turing machine may reach a “halting state” – in this case, the
machine simply stops – or it may operate indefinitely without ever reaching such a state.

It is this last condition that gives rise to the notion of a recursively enumerable set. We can set
a canonical method for representing a tuple (x1, . . . , xn) using symbols on a Turing machine tape,
then “program” the head with rules that allow it to calculate based on this input. Then we say that
a set E is recursively enumerable if there exists some Turing machine that, given (x1, . . . , xn) as
input, will eventually halt if and only if (x1, . . . , xn)∈E. (The name “recursively enumerable” comes
from the fact that any such set can actually be “enumerated” by a Turing machine by successively
printing out all of its members onto the tape.)

The Turing machine model was proposed and developed in the 1930’s by Alan Turing, Alonzo
Church, and Kurt Gödel; they formulated the first rigorous definitions of the formerly intuitive
notions of algorithm and computability. In doing so, they constructed the foundations upon which
#10 of Hilbert’s 23 outstanding mathematical problems would eventually be solved. Thirty years
before the concept of the Turing machine had been published, Hilbert had phrased the problem as
follows:

Given a Diophantine equation with any number of unknown quantities and with ra-
tional integral numerical coefficients: To devise a process according to which it can be
determined by a finite number of operations whether the equation is solvable in rational
integers.

We will examine the slight variation on Hilbert’s tenth problem that was attacked until its
solution in 1970 by Yuri Matiyasevich. That is, we will consider the term “Diophantine equation”
to refer to a polynomial equation in which all the coefficients are integers; then the problem becomes
whether it is possible to find an algorithm for determining the solubility of Diophantine equations
when its variables range over the integers.
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The development of the theory of Turing machiens was cotemperaneous with Gödel’s devel-
opment of the notion of primitive recursive functions, which he was using in his incompleteness
results. The primitive recursive functions are built up from a very small set of basic functions:

suc : Z+ → Z+, x 7→ x + 1
1(n) : (Z+)n → Z+, (x1, . . . , xn) 7→ 1
prn

i : (Z+)n → Z+, (x1, . . . , xn) 7→ xi

(“pr” is short for “projection.” The idea of extracting specific coordinates from a tuple, in effect
projecting the tuple onto those coordinates, will become particularly important later.)

The primitive recursive functions are then constructed by closing the set of basic functions
under the finite application of the following operations: composition, juxtaposition, and recur-
sion. Composition denotes the usual mathematical sense of the word. Given functions f, g tak-
ing (x1, . . . , xn) to (y1, . . . , yp), (z1, . . . , zq), respectively, juxtaposition allows us to define a new
function h : (Z+)n → (Z+)p × (Z+)q, (x1, . . . , xn) 7→ (y1, . . . , yp, z1, . . . , zq). Recursion—actually,
primitive recursion, but unless otherwise specified, that is what “recursion” will mean through-
out this paper—is the most complicated operation and gives this definition most of its potency:
Given f : (Z+)n → Z+ and g : (Z+)n+2 → Z+, applying recursion lets us define h : (Z+)n+1 →
Z+, (x1, . . . , xn, 1) 7→ f(x1, . . . , xn), (x1, . . . , xn, k + 1) 7→ g(x1, . . . , xn, k, h(x1, . . . , xn, k)). (Hence,
f serves as the initial condition, and g gives us the recursive calculation.)

A great deal of the familiar functions on the positive integers are primitive recursive; we will use
the term PRF for such functions. For example, addition is a PRF because if we take f to be suc
and g to be suc ◦ pr33, then the function defined by recursion using f and g is precisely addition.
Multiplication can be obtained from recursion on addition, then exponentiation from recursion on
multiplication. This highlights the important fact that, given known PRFs, any application of the
composition, juxtaposition, and recursion operations to them will yield another PRF. (We note
that in many presentations of this subject matter, juxtaposition is not included in the definition
of a PRF. This is simply because these presentations initially only concern themselves with PRFs
whose range ⊆ Z+, and defer discussion of higher dimensions.)

The PRFs do not cover all of the functions on the positive integers that we might consider
computable. For example, the Ackermann function is a natural example of a computable function
that is not primitive recursive. To encompass all such functions, the class of “general recursive”
functions is defined by adding an operation called the µ-operator whose intuitive effect is to in-
troduce partial functions (specifically, from a function f : (Z+)n → Z+, the µ-operator defines
g : (Z+)n−1 → Z+ such that g(x1, . . . , xn−1) = min{xn | f(x1, . . . , xn−1, xn) = 1}; clearly, there
is no guarantee that g will be everywhere-defined for arbitrary f). Given the details of a Turing
machine formalism, it then becomes relatively simple to show the following connection between
recursively enumerable sets ⊆ (Z+)n (as we defined them earlier) and general recursive functions:
E is recursively enumerable if and only if

E = {(x1, . . . , xn) ∈ (Z+)n | ∃y1, . . . , ym ∈ Z+, [f(x1, . . . , xn, y1, . . . , ym) = 0]}

for some general recursive function f . Equivalently, the level set of any recursive function is the
range of some other recursive function. (See [Soare] for details.)

One surprising associated fact is that if we replace the phrase “general recursive function” by
“primitive recursive function” in the above statement, the result continues to hold. This in itself
is a very interesting result; however, we will not touch on the proof here. (Details can be found in
many books on recursion theory, for example, [Soare]. Also see [Kleene].)
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The even more surprising result for which Matiyasevich’s work completed the proof was the
fact that the further “reduction” of substituting the words “polynomial with coefficients ∈ Z” for
“primitive recursive function” in the above result still does not change the class of sets thus defined.
In other words, any recursively enumerable set is the projection (to certain of its coordinates) of
the 0-level set of some polynomial with integer coefficients.

As stated earlier, such a polynomial is called a Diophantine polynomial. A subset of (Z+)n which
can be shown to be equal to {(x1, . . . , xn) ∈ (Z+)n | ∃y1, . . . , ym ∈ Z+, [f(x1, . . . , xn, y1, . . . , ym) =
0]} for some Diophantine polynomial f is then called a Diophantine set. Finally, the terminology
is extended to include relations and functions, since any relation can be represented naturally by
a set, namely its graph. For example, < is a Diophantine relation since a < b ⇐⇒ (a, b) ∈
{(x1, x2) ∈ (Z+)2 | ∃y ∈ Z+, [x1 + y − x2 = 0]} and x1 + y − x2 is a Diophantine polynomial in the
(x1, x2, y) space.

We note that the basic PRFs are Diophantine; we exhibit the relevant polynomial equations:

y = suc(x) ⇐⇒ y − x− 1 = 0
y = 1(n)(x1, . . . , xn) ⇐⇒ y − 1 = 0
y = prn

i (x1, . . . , xn) ⇐⇒ xi − y = 0

The result that the class of r.e. sets is identical with the class of Diophantine sets implies the
insolubility of Hilbert’s tenth problem, as we now explain. First, we show that the Diophantine
sets can be “Diophantically enumerated”: since all polynomials with positive integral coefficients
can be built up from 1 and variables by repeated addition and multiplication, it is possible to
enumerate every such polynomial in a list P0,P1,P2, · · · (for details, see [Davis1973]). Now, we
have defined Diophantine sets (of positive integers) as those which can be represented {y ∈ Z+ |
∃x1, . . . , xn, [f(x1, . . . , xm, y) = 0]} for some polynomial f with coefficients ∈ Z. This trivially is
the same as the class of sets that can be represented {y ∈ Z+ | ∃x1, . . . , xm, [Pi(x1, . . . , xm, y) =
Pj(x1, . . . , xm, y)]} for some Pi,Pj as defined above.

To encode the pairs (i, j) ∈ (Z+)2 into a single number n ∈ Z+, we can use the function
pair(i, j) = (i + j − 1)(i + j − 2)/2 + j. Then left(n) can be Diophantically defined by the i
such that ∃j, [2n = (i + j − 1)(i + j − 2) + 2j] and similarly for right(n). Thus, Dn = {y ∈
Z+ | ∃x1, . . . , xm, [Pleft(n)(x1, . . . , xm, y) = Pright(n)(x1, . . . , xm, y)]} is an enumeration of all of the
Diophantine sets; moreover, it can be defined in a Diophantine fashion.

We apply Cantor’s diagonal method to the Dn’s: let V = {n | n 6∈ Dn}. V cannot be Dio-
phantine; otherwise, it would be equal to Dn for some n, then n cannot logically be either ∈ Dn

or 6∈ Dn. On the other hand, as mentioned above, “z ∈ Dn” is a Diophantine relation, so there
is some polynomial f with coefficients ∈ Z+ with the property z ∈ Dn ⇐⇒ (n, z) ∈ {(y1, y2) ∈
(Z+)2 | ∃x1, . . . , xm, [f(x1, . . . , xm, y1, y2) = 0]}. Now suppose Hilbert’s tenth problem were sol-
uble, and there was an algorithm to tell whether arbitrary Diophantine equations had positive
integer solutions or not. In particular, this algorithm would be able to calculate, for any n, whether
f(x1, . . . , xm, n, n) = 0 has a solution, i.e., whether n ∈ Dn or, more importantly, n 6∈ Dn. Since
Turing machines can perform all algorithms (assuming we accept Church’s thesis), we can design a
Turing machine that on input n will halt if and only if n 6∈ Dn. By the Turing machine definition
of recursively enumerable, this means that V = {n | n 6∈ Dn} is an r.e. set. But if we know that all
r.e. sets are Diophantine, this means that V is Diophantine, and we already showed that it cannot
be. This is a contradiction, so Hilbert’s tenth problem is insoluble.

The actual result that Matiyasevich proved was that a certain relation with “roughly” expo-
nential growth (in fact, v = φ2u, where φn denotes the nth Fibonacci number) was Diophantine.
It had previously been proved by Julia Robinson that if any coordinate of a Diophantine relation
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could be shown to exhibit exponential growth with respect to all the other coordinates, then ex-
ponentiation itself was Diophantine. This, in turn, combined with the results of Robinson, Martin
Davis, and Hilary Putnam in [Davis1961] to show that the class of r.e. sets is identical with the
class of Diophantine sets.

The next two sections will be devoted to showing a proof that is a variation on that original line
of investigation. Much of the framework is borrowed from [Manin]; the proof will also use many
simplifications from later works of Matiyasevich, Robinson, and Davis.

2 D-sets and the bounded universal quantifier

We first define some ground notions. Note that unless otherwise specified, all variables are to be
taken to be from Z+. (Should we wish to refer to the set of natural numbers including 0, we shall
use the notation N.) Recall: a set F is Diophantine if there is some polynomial f with coefficients
∈ Z such that F = {(x1, . . . , xn) | ∃y1, . . . , ym, [f(x1, . . . , xn, y1, . . . , ym) = 0]}. F is recursively
enumerable (abbr. “r.e”) if there is a primitive recursive function g such that F = {(x1, . . . , xn) |
∃y1, . . . , ym, [g(x1, . . . , xn, y1, . . . , ym) = 0]}.

To show that these two classes are in fact one and the same, we introduce what Manin calls the
class of “D-sets” (probably after Martin Davis; the notion is nearly the same as that of Davis Normal
Form expressions). To define this, we need an operator called the bounded universal quantifier,
defined as follows: Given a set F whose members are of the form (x1, . . . , xn), the set G is said to be
obtained by bounded universal quantification on the ith coordinate if (x1, . . . , xi, . . . , xn)∈F ⇐⇒
∀k, [1≤k≤xi =⇒ (x1, . . . , xi−1, k, xi+1, . . . , xn)∈G].

The class of D-sets is obtained from the class of Diophantine sets by closing it under the opera-
tions of finite direct product, finite union, finite intersection, finite direct product, projection, and
application of the bounded universal quantifier. The overall plan of proof, then, is to show that the
class of recursively enumerable sets is the same as the class of D-sets and to subsequently prove
that the class of D-sets coincides with the class of Diophantine sets. We start with proving that
{r.e. sets} = {D-sets}.

The r.e. sets are closed under union, intersection, direct product, and projection: Take E1, E2, E3

to be r.e. sets defined by PRFs f1 : (Z+)n+p → Z+, f2 : (Z+)n+q → Z+, f3 : (Z+)m+r → Z+,
respectively, i.e.,

E1 = {x = (x1, . . . , xn) | ∃y = (y1, . . . , yp), [f1(x, y) = 0]},

and similarly for E2, a set of n-tuples and E3, a set of m-tuples. (We use the shorthand f(x, y) for
“f(x1, . . . , xn, y1, . . . , yp)”.)

Let x and y denote n- and p-tuples as above, and let z, u, v denote q-, m-, r-tuples. Then E1∩E2

is the projection of the 0-level set of the function g(x, y, z) = (f1(x, y))2 +(f2(x, z))2 onto its first n
coordinates, and E1∪E2 is the projection of the 0-level set of the g(x, y, z) = f1(x, y)·f2(x, z) onto its
first n coordinates. E1×E3 is the projection of the 0-level set of g(x, u, y, v) = (f1(x, y))2+(f3(u, v))2

onto its first n + m coordinates. These are all PRFs, so each set is r.e. (Closure under projection
follows immediately from the definition.)

Any D-set can be obtained from Diophantine sets through the previously mentioned operations,
and {Diophantine sets} ⊆ {r.e sets} (because every polynomial is primitive recursive). We have just
shown the closure of {r.e. sets} under all of the operations except bounded universal quantification;
if we can show closure for that, then we will have proved that {D-sets} ⊆ {r.e. sets}.

Proposition: {r.e. sets} is closed under bounded universal quantification.
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Proof: We start with r.e. set E, a projection of the 0-level set of PRF f onto its first n coordi-
nates. Let F be the set obtained from E by bounded universal quantification on the nth coordinate:
(x1, . . . , xn) ∈ F ⇐⇒ for 1≤k≤xn, ∃y1k, . . . , ymk such that f(x1, . . . , xn−1, k, y1k, . . . .ymk) = 0. We
want a PRF g such that F = {x = (x1, . . . , xn) | ∃u = (u1 . . . , um), t = (t1 . . . , tm), [g(x, u, t) = 0]}.

To define g, we will need an “encoding” function that lets us represent arbitrarily long sequences
(a1, . . . , aN ) with a pair of numbers (u, t). We will use a technique pioneered by Gödel. Let bx/yc
denote the floor function, i.e., the greatest integer less than x/y.

Lemma: z = bx/yc is a Diophantine relation.
Proof: We present this one example in full to show how a relation that is a reasonable com-

bination of Diophantine relations must itself be Diophantine; other results of this ilk are spread
throughout this paper, and the techniques of rigorously proving them will be the same.

First, we note that z = bx/yc ⇐⇒ yz ≤ x < y(z + 1).
The first of these inequalities can be expressed as follows: ∃a, [yz + a− x− 1 = 0]. (Note that

the space from which we are choosing variables’ values is Z+.) The second inequality is expressed
as ∃b, [x + b − yz − y = 0]. To combine these two inequalities, we use the method given earlier
for intersecting two r.e. sets, i.e., let f(x, y, z, a, b) = (yz + a − x − 1)2 + (x + b − yz − y)2. Then
{(x, y, z) | ∃a, b, [f(x, y, z, a, b) = 0]} = {(x, y, z) | z = bx/yc}. That is, z = bx/yc determines a set
which is also the 0-level of a Diophantine polynomial. Thus, it is a Diophantine relation. �

Let “rem(x, y)” denote the remainder function, i.e. the remainder when dividing x by y.
rem(x, y) = x−y ·bx

y c, so rem is also Diophantine. (Briefly, z = rem(x, y) ⇐⇒ (z+y ·bx
y c−x = 0),

and by the Diophantine nature of the floor function, the right hand side of the if and only if is a
Diophantine polynomial equation.)

Let gd(u, k, t) = rem(1 + kt, u). This as well is Diophantine. We want to choose (u, t) such that
gd(u, k, t) = ak for all 1 ≤ k ≤ N . First choose X ≥ N such that ∀k, [1 + kX! > ak], and let
t = X!. (The lower bound on X and the use of the factorial operation are necessary to ensure that
the Chinese remainder theorem will apply below.)

We note that for k1 < k2 ≤ N we have gcd(1+ k1t, 1+ k2t) = 1, since any common prime factor
would also have to divide (k2 − k1)X!, but all such primes are < X and thus cannot divide any
number of the form 1 + kX!.

Thus, the Chinese remainder theorem asserts that there is a solution u to the system of equations
u ≡ ak (mod 1 + kt), 1 ≤ k ≤ N . u and t serve as our encoding of the sequence of ak’s, and gd
extracts the values accordingly.

With that done, let g be defined as follows:

g(x1, . . . , u1, . . . , t1, . . .) =
xn∑

k=1

[f(x1, . . . , xn, gd(u1, k, t1), . . . , gd(um, k, tm))]2.

If there are ui, ti such that f(x1, . . . , xn, gd(u1, k, t1), . . . , gd(um, k, tm)) = 0 for 1 ≤ k ≤ xn, then
g will equal 0. But by the definition of bounded universal quantification, we already have the yik’s
that are witnesses to (x1, . . . , xn) being members of E. Thus, we can find the requisite ui, ti’s that
encode the lists (y11, y21, . . . , ym1), (y12, y22, . . . , ym2), · · · , and g will indeed equal 0. Note that the
finesse of using the gd function was necessary because otherwise, due to the yik’s, the function g
would have had a non-fixed number of arguments.

On the other hand, if g gives a value of 0, then for all 1 ≤ k ≤ xn, we have (x1, . . . , xn−1, k) ∈ E.
So (x1, . . . , xn) ∈ F .

g is a PRF, having been built up from PRFs f and gd, so {r.e. sets} is closed under bounded
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universal quantification. �

Therefore, {D-sets} ⊆ {r.e. sets}. We must still show that {r.e. sets} ⊆ {D-sets}.
By definition, every r.e. set E is the 1-level of some PRF f . One way to look at this is that E

is the projection of [(Z+)n× 1]∩{(x1, . . . , xn, y) | f(x1, . . . , xn) = y} to its first n coordinates. The
first set of this intersection is clearly a D-set, so if we can show that the second set, i.e., the graph
of a PRF f , is a D-set also, then by the closure of D-sets under intersection and projection, every
r.e. set E is a D-set.

We do this by considering the definition of primitive recursive functions. First of all, the graphs
of all of the basic PRFs were already shown to be Diophantine, so they are D-sets as well.

Now, take two PRFs f : (Z+)q → (Z+)r, g : (Z+)p → (Z+)q whose graphs Γf ,Γg are known to
be D-sets. Γf◦g is the projection of [Γg×(Z+)r]∩ [(Z+)p×Γf ] to its first p and its last r coordinates.
Since D-sets are closed under direct product and intersection, Γf◦g is a D-set.

Next, take two PRFs f : (Z+)p → (Z+)q, g : (Z+)p → (Z+)r whose graphs Γf ,Γg are again known
to be D-sets. Let h be the function that comes from juxtaposing f and g. Γh = [Γf × (Z+)r] ∩
permp,q,r[Γg × (Z+)q], where “permp,q,r” is the operation that switches the places of last q coor-
dinates with the r coordinates before it. (Example: perm1,2,4(1, 2, 2, 2, 2, 3, 3) = (1, 3, 3, 2, 2, 2, 2).
Given any p, q, r, permp,q,r can be created from the projection base function using applications of
juxtaposition, so it is a PRF.) Since D-sets are closed under direct product and intersection, Γh is
a D-set.

It remains to show that the operation of recursion preserves the property of being a D-set. We
will use the function gd defined earlier; it is Diophantine, so its graph is a D-set. We are given
functions f : (Z+)n → Z+ and g : (Z+)n+2 → Z+ whose graphs are D-sets, and we want to show
that the graph of h : (Z+)n+1 → Z+ is also a D-set, where h behaves as follows:

h(x1, . . . , xn, 1) = f(x1, . . . , xn)
h(x1, . . . , xn, k + 1) = g(x1, . . . , xn, k, h(x1, . . . , xn, k))

Γh = {(x1, . . . , xn, y, z) | h(x1, . . . , xn, y) = z}. Let Γ1 = {(x1, . . . , xn, 1, z) | (x1, . . . , xn, 1, z) ∈
Γh}, and let Γ2 = Γh − Γ1, i.e., the part of the graph where h takes values > 1.

(x1, . . . , xn, y, z) ∈ Γ1 if and only if y = 1 and z = f(x1, . . . , xn), i.e., (x1, . . . , xn, z) ∈ Γf . Thus,
Γ1 = permn,1,1(Γf × Z+) ∩ {(x1, . . . , xn, 1, z)}. This is clearly a D-set.

As for Γ2, we consider the following equations (which we will identify with the sets that they
determine):

G1 : z = gd(u, y, t)
G2 : gd(u, 1, t) = f(x1, . . . , xn)
G3 : y > 1 ∧ ∀2 ≤ k ≤ y, [gd(u, k, t) = g(x1, . . . , xn, k − 1, gd(u, k − 1, t))]

Taken together, these determine a set G in the (x1, . . . , xn, y, z, u, t) space.

Proposition: Γ2 ⊆ the projection of G to its first n + 2 coordinates.
Proof: Choose u, t such that they encode the sequence h(x1, . . . , xn, 1), h(x1, . . . , xn, 2), · · · ,

h(x1, . . . , xn, y).
G1 is satisfied, since (x1, . . . , xn, y, z) ∈ Γ2 implies z = h(x1, . . . , xn, y). Then gd(u, y, t) =

h(x1, . . . , xn, y) = z.
G2 is satisfied, since gd(u, 1, t) = h(x1, . . . , xn, 1) = f(x1, . . . , xn).
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(x1, . . . , xn, y, z) ∈ Γ2 also implies y > 1. Thus, we can show by induction on k that G3 holds:
G2 provides the base case, and the inductive step holds trivially from the comparison of the G3

condition to the definition of primitive recursion. �

Proposition: (The projection of G to its first n + 2 coordinates) ⊆ Γ2.
Proof: Take any (x1, . . . , xn, y, z, u, t) ∈ G. Then, by G2 and G3, u, t encode the following

sequence {a1, a2, . . . , }:

a1 = f(x1, . . . , xn) = h(x1, . . . , xn, 1),
a2 = g(x1, . . . , xn, 1, f(x1, . . . , xn)) = h(x1, . . . , xn, 2),
a3 = g(x1, . . . , xn, 2, h(x1, . . . , xn, 2)) = h(x1, . . . , xn, 3),

...
ay = g(x1, . . . , xn, y, h(x1, . . . , xn, y − 1)) = h(x1, . . . , xn, y).

By G1, z = gd(u, y, t) = ay = h(x1, . . . , xn, y), and by G3, y > 1, so (x1, . . . , xn, y, z) ∈ Γ2. �

Therefore, Γ2 = the projection of G to its first n + 2 coordinates. It remains to show that each
of G1, G2, G3 determines D-sets; then by the closure of D-sets under intersection and projection,
Γ2 will be a D-set.

G1 is simply the graph of the gd function, with extra coordinates x1, . . . , xn. From the definition
of gd, the set determined by G1 can be expressed as a projection of {(x1, . . . , xn, y, z, u, t, w) |
rem(1 + yt, u)− w = 0}. We have already shown rem to be Diophantine, so G1 is a D-set.

G2 is the a projection of the intersection of the following D-sets: k − 1 = 0, w = gd(u, k, t),
f(x1, . . . , xn)− w = 0, where we have introduced auxiliary variables k, w. Thus, G2 is a D-set.

For G3, consider the following equations:

z = gd(u, y′, t)
w = gd(u, y′ + 1, t)
w = g(x1, . . . , xn, y′, z)

Each of the sets determined by equations is a D-set, so taken together, they define a D-set;
call it F . Applying the bounded universal quantifier to the y′ coordinate of F then gives us
a set F ′ defined as follows: (x1, . . . , xn, y′, z, u, t) ∈ F ′ ⇐⇒ ∀1 ≤ k ≤ y′, [gd(u, k + 1, t) =
g(x1, . . . , xn, k, gd(u, k, t))].

On the other hand, (x1, . . . , xn, y, z, u, t) ∈ G3 ⇐⇒ ∀1 ≤ k ≤ y − 1, [gd(u, k + 1, t) =
g(x1, . . . , xn, k, gd(u, k, t))]. Thus, G3 = projection of {(x1, . . . , xn, y, z, u, t, y′) | y′ − (y − 1) =
0 ∧ (x1, . . . , xn, y′, z, u, t) ∈ F ′} to its first n + 4 coordinates. F ′ is a D-set, so G3 is a D-set.

Combining all of the above results, we finally conclude that {r.e. sets} = {D-sets}.

3 The reduction to exponentiation

The proof that {r.e. sets} = {D-sets} was relatively long but mostly for technical reasons. Showing
that {Diophantine sets} = {D-sets} is a much more difficult proposition. From the definition, we
have {Diophantine sets} ⊆ {D-sets}. The result {D-sets} ⊆ {Diophantine sets} was historically the
last step completed in the overall proof. The goal of this section is to show why the Diophantine
nature of exponentiation is important to this step. Thus, for the remainder of this section, we
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will assume that exponentiation is a Diophantine relation; we will turn to the actual proof of
exponentiation’s Diophantine nature in the next section.

First, we show that the graphs of some other “elementary” functions are Diophantine.

Lemma: If u > nk and n≥k, then
(
n
k

)
= rem(b(u + 1)n/ukc, u).

Proof:
(u + 1)n

uk
=

k−1∑
i=0

(
n

i

)
ui−k +

(
n

k

)
+

n∑
i=k+1

(
n

i

)
ui−k

By simple estimation,
(
n
i

)
≤ni, so

∑k−1
i=0

(
n
i

)
ui−k ≤ n0

uk + n1

uk−1 + · · · + nk−1

u1 . u > nk, so this
expression in turn < 1

nk·k + n
nk(k−1) + · · ·+ nk−1

nk < k· 1n ≤ 1. Thus, the floor operation eliminates the
first term. The last term is divisible by u. The middle term,

(
n
k

)
, is less than u, since u > nk ≥

(
n
k

)
.

The lemma follows. �

We know that z = bx/yc and z = rem(x, y) are Diophantine relations, and if exponentiation is
also assumed to be Diophantine, this lemma proves that

(
n
k

)
is a Diophantine relation. With that

in hand, we can show the factorial relation is Diophantine as well:

Lemma: For k > 0 and n > (2k)k+1, k! = bnk/
(
n
k

)
c.

Proof: First,

nk(
n
k

) =
nkk!

n(n− 1) · · · (n− k + 1)
= k! · 1

(1− 1/n) · · · (1− (k − 1)/n)
> k!.

k/n < 1
2 , so:

1 +
2k

n
= 1 +

k

n

(
1 +

1
2

+
1
4

+ · · ·
)

> 1 +
k

n

(
1 +

k

n
+
(

k

n

)2

+ · · ·

)
=

1
1− k/n

.

Furthermore, (
1 +

2k

n

)k

=
k∑

j=0

(
k

j

)(
2k

n

)j

< 1 +
2k

n

k∑
j=1

(
k

j

)
< 1 +

2k

n
· 2k.

Thus,

nk(
n
k

) = k! · 1
(1− 1/n) · · · (1− (k − 1)/n)

< k! · 1
(1− k/n)k

< k! ·
(

1 +
2k

n

)k

< k! + k! · 2k

n
· 2k < k! +

2k+1kk+1

n
< k! + 1

Therefore, k! < nk

(n
k)

< k! + 1, and the lemma follows. �

We note that, without any further work, we can now deduce that the set of primes is Diophantine.
That is, a is prime ⇐⇒ [a > 1∧ gcd(a, (a− 1)!) = 1], and we can now express the right-hand side
of the if and only if as a system of Diophantine equations which may be combined into a single
Diophantine equation by the technique elaborated upon earlier. Written out explicitly, this would
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be a very complex expression; later we will see a more compact Diophantine equation for the set
of primes.

We now show that a pair of somewhat more complicated functions that we will need shortly are
Diophantine:

Lemma: z =
∏

1≤j≤Y (Y1 − j) ∧ Y1 > Y is Diophantine.
Proof: By pure algebraic manipulation, z =

∏
1≤j≤Y (Y1 − j) ∧ Y1 > Y is equivalent to z =

Y !
(
Y1

Y

)
∧ Y1 > Y . This is Diophantine. �

Lemma: z =
∏

1≤k≤y(1 + kn) is Diophantine.
Proof: We introduce additional variables u, v which will later be projected out. Let u = n(1 +

yn)y + 1; note that this is a Diophantine relation. gcd(u, n) = 1 and u >
∏

1≤k≤y(1 + kn), so
∃v, [vn ≡ 1(mod u)]].

Consider nyy!
(
v+y

y

)
= ny(v+y)(v+y−1) · · · (v+1) = (vn+yn)(vn+(y−1)n) · · · (vn+n). Taken

mod u, this last expression is congruent to (1 + yn)(1 + (y− 1)n) · · · (1 + n) =
∏

1≤k≤y(1 + kn). In
fact, since u >

∏
1≤k≤y(1+kn), we have that

∏
1≤k≤y(1+kn) = rem(nyy!

(
v+y

y

)
, u). The right-hand

side of this equation is Diophantine, and the lemma is proven. �

We finally turn back to D-sets. Since the Diophantine sets are closed under finite union, finite
intersection, finite direct product, and projection (the proof is the same as that given for the closure
properties of the r.e. sets), we need only show that applying the bounded universal quantifier to a
Diophantine set yields another Diophantine set.

We begin with a Diophantine set E, represented as the projection of the 0-level set of some
Diophantine polynomial f(x1, . . . , xn, k, y1, . . . , ym) onto its first n+1 coordinates (using n+1 will
simplify later expressions). Let D be the set obtained from bounded universal quantification on the
(n+1)th coordinate of E, i.e.,(x1, . . . , xn, z) ∈ D ⇐⇒ for 1≤k≤z, there are y1k, . . . , ymk such that
f(x1, . . . , xn, k, y1k, . . . .ymk) = 0. Also, let c be the sum of the absolute values of the coefficients of
f , and let d be f ’s degree.

Now consider the following set of equations (the last one is actually shorthand for m separate
equations):

1 + KN ! =
z∏

k=1

(1 + kN !)

N ≥ c(x1 · · ·xnzY )d ∧ Y < Y1 ∧ · · · ∧ Y < Ym

f(x1, . . . , xn,K, Y1, . . . , Ym) ≡ 0 (mod 1 + KN !)∏
j≤Y

(Yi − j) ≡ 0 (mod 1 + KN !) (i = 1, . . . ,m)

By the results worked out earlier in this section, these equations determine a Diophantine set
D′ in the (x1, . . . , xn, z, Y,N, K, Y1, . . . , Ym) space.

Proposition: D ⊆ the projection of D′ to its first n + 1 coordinates.
Proof: It suffices, given (x1, . . . , xn, z) ∈ D, to find values for the other coordinates, i.e.,

K, Y,N, Y1, . . . , Ym, such that the equations defining D′ are satisfied.
K is determined by the first equation.
Since D is a D-set, for 1≤k≤z, there are y1k, . . . , ymk such that f(x1, . . . , xn, k, y1k, . . . .ymk) = 0.
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Let Y = max[z ∪
⋃

i≤m,k≤z yik].
Recall the gd function; we will now use it to encode the yik’s into the Yi’s (and N !). That is,

we solve:

gd(Yi, k,N !) = yik

for all 1 ≤ i ≤ m, 1 ≤ k ≤ z. This is possible by the previously proved properties of gd. Fur-
thermore, we may choose N arbitrarily large, so the Yi’s can be made arbitrarily large as well
(specifically, by repeatedly adding 1 + kN !). In particular, both N and the Yi’s can be made large
enough such that they satisfy the second equation/inequality.

By the definition of gd, 1 + kN ! | Yi − yik. We know that any yik ≤ Y < Yi, so for all i,
1 + kN ! |

∏
j≤Y (Yi − j). Also, for any k1 < k2 ≤ z, gcd(1 + k1N !, 1 + k2N !) = 1. (Proof: Any

common factor p would have to also divide (k2− k1)N !. By the second equation/inequality z ≤ N ,
so p | N . But no such p can divide 1 + k1N !.) By the first equation, 1 + KN ! |

∏
j≤Y (Yi − j), and

the last set of equations is satisfied.
Also by the first equation, (1 + KN !)− (1 + kN !) ≡ 0 (mod 1 + kN !), so K ≡ k (mod 1 + kN !).

By the way we chose the Yi’s, Yi ≡ yik (mod 1 + kN !). Thus, since f is a Diophantine polynomial,
f(x1, . . . , xn,K, Y1, . . . , Ym) ≡ f(x1, . . . , xn, k, yik, . . . , ymk) ≡ 0 (mod 1 + kN !). This directly
implies the third equation, and the proposition is proved. �

Proposition: The projection of D′ to its first n + 1 coordinates ⊆ D.
Proof: It suffices, given (x1, . . . , xn, z, Y,N, K, Y1, . . . , Ym) ∈ D′, to find values for yik (1 ≤ i ≤

m, 1 ≤ k ≤ z) such that f(x1, . . . , xn, k, y1k, . . . , ymk) = 0. First, we let pk be any prime such that
pk | 1 + kN !. Note that from this, all the pk’s must be > N .

Also, pk | 1 + KN ! |
∏

j≤Y (Yi − j). pk is prime, so there is some j ≤ Y such that pk | Yi − j.
Let yik = j; in other words, yik = rem(Yi, pk).

All the yik’s are thus ≤ Y , so f(x1, . . . , xn, k, y1k, . . . , ymk) ≤ c(x1 · · ·xnzY )d (since f is a
polynomial). By the second equation/inequality, f(x1, . . . , xn, k, y1k, . . . , ymk) ≤ N < pk.

Meanwhile, we know f(x1, . . . , xn,K, Y1, . . . , Ym) ≡ 0 (mod 1+KN !) and K ≡ k (mod 1+kN !),
so:

f(x1, . . . , xn, k, y1k, . . . , ymk) ≡ f(x1, . . . , xn,K, Y1, . . . , Ym) ≡ 0 (mod pk).

Therefore, f(x1, . . . , xn, k, y1k, . . . , ymk) must = 0 for all k (1 ≤ k ≤ z). Thus, we have found
appropriate yik’s that are witnesses to the fact that (x1, . . . , xn, z) ∈ D. �

Combining all the above results, {r.e. sets} = {D-sets} = {Diophantine sets}.

4 The Diophantine nature of exponentiation

To derive the results of the previous section, we had to assume that exponentiation was a Dio-
phantine relation, a fact that turns out to be far from obvious (cf. Tarski, who conjectured that
exponentiation was not Diophantine). As stated in the introduction, it was Matiyasevich who pro-
vided this last piece of the puzzle in 1970. Manin’s version of the proof follows Davis’ approach of
abandoning Fibonacci numbers in favor of examining another concept familiar to number theorists:
Pell’s equation, i.e., x2 − dy2 = 1. In particular, we will look at the solutions to the equation:

x2 − (a2 − 1)y2 = 1
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(We disregard the trivial solution (1, 0).) The theory on Pell’s equations gives us the result that
if (x1, y1) is the solution with the least first coordinate, then any other solution (xi, yi) can be
determined from the equation xi + yi

√
d = (x1 + y1

√
d)i (in this case, we have d = a2 − 1)

We create functions xn(a), yn(a) which denote the coordinates of nth solutions of x2 − (a2 −
1)y2 = 1. Conveniently, for this special Pell’s equation, the first solution will always be the trivial
(a, 1), so x1(a) = a and y1(a) = 1. Furthermore, since xi+1(a) + yi+1(a)

√
a2 − 1 = (x1(a) +

y1(a)
√

a2 − 1)(xi(a) + yi(a)
√

a2 − 1), we have the recurrence relations:

xi+1(a) = axi(a) + (a2 − 1)yi(a)
yi+1(a) = xi(a) + ayi(a)

These will be useful later. One particularly important consequence of them is that xi(a), yi(a) are
both strictly increasing functions.

We will prove that yn(a) is a Diophantine function, but first let us see why that result will lead
to a proof that exponentiation is Diophantine:

Lemma: z = yn(a) is Diophantine =⇒ m = an is Diophantine
Proof: Clearly, if a = 1, m = an is Diophantine, so we assume for the rest of the proof that

a > 1.
We first show that (2a − 1)n ≤ yn+1(a) ≤ (2a)n, by induction. A quick calculation shows that

y2(a) = 2a, so the base case checks: 2a− 1 ≤ 2a ≤ 2a. By manipulation of the recurrence relation
for yn(a), we find that yn+2(a) = ayn+1(a) + xn+1(a) =

(
a + xn+1(a)

yn+1(a)

)
· yn+1(a). By Pell’s equation

itself, we have:

xn+1(a)
yn+1(a)

=

√
a2 − 1 +

1
yn+1(a)2

< a

Furthermore, a − 1 <
√

a2 − 1 + 1
yn+1(a)2

. Thus, (2a − 1) · yn+1(a) < yn+2(a) < 2a · yn+1(a).

Thus, by induction, (2a− 1)n ≤ yn+1(a) ≤ (2a)n.
Thus,

an

(
1− 1

2Na

)n

=
(2Na− 1)n

(2N)n
≤ yn+1(Na)

yn+1(N)
≤ (2Na)n

(2N − 1)n
= an 1

(1− 1
2N )n

If we choose N “large enough”, it will ensure that the closest integer to yn+1(Na)/yn+1(N) will
be an. “Closest integer” can be defined in a Diophantine fashion, so the problem thus becomes how
to define “large enough” in a Diophantine fashion. By simple binomial expansion, we know that(

1− 1
2Na

)n

≥ 1− n

2Na
.

Similarly,

1
(1− 1

2N )n
≤ 1

1− n
2N

=
(
1− n

2N

)−1
≤ 1 +

n

N
.

Thus, we have:
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an
(
1− n

2Na

)
≤ yn+1(Na)

yn+1(N)
≤ an

(
1 +

n

N

)
an − an · n

2Na
≤ yn+1(Na)

yn+1(N)
≤ an +

an · n
N

.

So, if we choose N > 2nan, then an − 1
2 < yn+1(Na)

yn+1(N) < an + 1
2 . But an ≤ (2a− 1)n ≤ yn+1(a), so

it suffices to take N > 2n · yn+1(a), and this last inequality is a Diophantine relation. The lemma
is proved. �

All that now remains is to prove that y = yn(a) is a Diophantine relation. This was by no means
an obvious development: Julia Robinson had already anticipated the possibility of using Pell’s
equation in this vein in [Robinson], but it would be nearly twenty years before anyone actually did
so (see [Davis1973]), and even then it was only inspired by the techniques that Matiyasevich used
for his own proof.

For maximum ease of understanding, we will use the convention that variable names from late
in the alphabet will denote solutions to (some) Pell’s equation, and variable names from early in
the alphabet will denote numbers that are related to the free coefficient in Pell’s equation (d in our
initial presentation).

We first note that by induction on n and the use of the recurrence relations for xn(a), yn(a), it
is simple to show that:

xn(a) = an +
bn/2c∑
i=1

(
n

2i

)
an−2i(a2 − 1)i

yn(a) =
b(n+1)/2c∑

i=1

(
n

2i− 1

)
an−2i+1(a2 − 1)i−1

Now consider the following set of equations:

D1 : y ≥ n ∧ a > 1
D2 : x2 − (a2 − 1)y2 = 1
D3 : v ≡ 0 (mod 4y2)
D4 : u2 − (a2 − 1)v2 = 1
D5 : b = a + u2(u2 − a)
D6 : s2 − (b2 − 1)t2 = 1
D7 : s ≡ x (mod u)
D8 : t ≡ n (mod 4y)

Taken together, these clearly define a Diophantine set; call it D.
How are we to grasp the meaning of these equations intuitively? Note that, taken mod a−1, all

the terms of the sum for yn(a) drop out except the first one; thus, yn(a) ≡ n (mod a − 1). Thus,
the Diophantine equation x2 − (a2 − 1)y2 = 1 ∧ y ≡ n (mod a − 1) suffices to determine the set
{(y, n, a, x) | ∃z, [y = yn+z(a−1)(a)]}. Equations D3 − D8 basically serve to pare down this set to
only the case where z = 0, i.e., y = yn(a), but showing that this is the case requires many details
from the properties of solutions of Pell’s equation. We will do this below.
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That is, let E be the set determined by the relation y = yn(a). We will show that E = the
projection of D to the coordinates (y, n, a).

Proposition: E ⊆ the projection of D to the coordinates (y, n, a).
Proof: Given y = yn(a), we must find values for x, u, v, s, t, b such that D1 −D8 are satisfied.
Certainly we have that y ≥ n and a > 1, since yn(a) ≥ n (proved by induction). Thus, D1 is

already satisfied. x is uniquely determined from D2, which will thus be satisfied.
Take (u, v/4y2) to be any solution of the equation X2 − (a2 − 1)(4y2)2Y 2 = 1 (the theory of

Pell’s equations guarantees that there is a solution, since (a2−1)(4y2)2 cannot be a perfect square).
This will satisfy both D3 and D4. With u chosen, b is uniquely determined by D5.

Take s, t to be the nth solutions for D6, i.e., s = xn(b), t = yn(b). This completes the choices;
we must still show that D7 and D8 are satisfied.

We can discern from the sum expression for xn(a) that (xn(j) − xn(k)) ≡ 0 (mod j − k),
since j − k | jl − kl for any l > 0. Thus, (xn(b) − xn(a)) ≡ 0 (mod u2(u2 − a)), which implies
s− x ≡ 0 (mod u), so D7 is satisfied.

Now, 4y | 4y2, so by D3, 4y | v. Substituting D4 into D5, we have b = a + (1 + (a2 − 1)v2)(1 +
(a2 − 1)v2 − a), and taking this mod 4y yields b − 1 ≡ 0 (mod 4y). As for xn(a), we can discern
from the sum expression for yn(a) that (yn(j) − yn(k)) ≡ 0 (mod j − k). Thus, we know that
(yn(b)− yn(1)) ≡ 0 (mod b− 1).

What is yn(1)? By the sum expression, yn(1) = n. (This may strike one as a little bit odd, but
the expressions also give us that xn(1) = 1, and certainly, 12 − 0 · n2 = 1.) Thus, t ≡ n (mod 4y),
and D8 is satisfied. �

Proposition: (The projection of D to the coordinates (y, n, a)) ⊆ E.
Proof: This direction is quite a bit more complicated than the other one. We are given

y, n, a, x, u, v, s, t, b satisfying D1 − D8, and we want to show that y is the second coordinate of
the nth solution of x2 − (a2 − 1)y2 = 1.

Since D2 is satisfied, we do not have to worry about (x, y) being some solution of x2−(a2−1)y2 =
1. Thus, by the theory of Pell’s equations, (x, y) is the Nth solution of said equation for some N ;
similarly, let N ′ be the number such that (u, v) is the N ′th solution, and let Nb be the number
such that (s, t) is the Nbth solution of x2 − (b2 − 1)y2 = 1. We need only show that N must = n.

As was shown in the proof of the other direction, D4 and D5 give us that 4y | b − 1. Also,
(yNb

(b) − yNb
(1)) ≡ 0 (mod b − 1), so t ≡ Nb (mod 4y). Combining this with D8 gives us that

Nb ≡ n (mod 4y). The rest of the proof of this direction is simply to find a particular constraint
on N and Nb that, when combined with this result, gives us n = N .

xi+j(a)+yi+j(a)
√

a2 − 1 = (xi(a)+yi(a)
√

a2 − 1)(xj(a)+yj(a)
√

a2 − 1), so yi+j(a) = yj(a)xi(a)+
yi(a)xj(a). Induction then tells us that yi(a) | yij(a). We also note that since 1/(xj(a) +
yj(a)

√
a2 − 1) = xj(a)− yj(a)

√
a2 − 1, we have yi−j(a) = yi(a)xj(a)− yi(a)xj(a).

Suppose N 6 |N ′, i.e. N ′ = qN + r for some 0 < r < N . Thus,

yN ′(a) = yr(a)xqN (a) + yqN (a)xr(a).

By D3, y2 | v, i.e., (yN (a))2 | yN ′(a). Thus, yN (a) | yN ′(a). Also, yN (a) | yqN (a), so yN (a) |
yr(a)xqN (a). But xqN (a) and yqN (a), being a solution of a Pell’s equation, cannot share a common
factor (such a factor would have to divide into 1); thus, yN (a) 6| xqN (a). Therefore, yN (a) | yr(a).
But r < N , and yi(a) increases with i. This is a contradiction, so N | N ′; let k be such that
N ′ = kN .

Further examination of xkN (a)+ykN (a)
√

a2 − 1 = (xN (a)+yN (a)
√

a2 − 1)k yields, by binomial
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expansion:

v =
∑

i≤k,i≡1(mod 2)

(
k

i

)
xk−iyi(a2 − 1)(i−1)/2.

mod y3, everything but the first term drops out, leaving v ≡ kxk−1y (mod y3). Since y2 | v and
y2 | y3, we have that y2 | kxk−1y, i.e., y | kxk−1. But, as before, x and y can share no common
factors, so y | k. By the definition of k, y | N ′.

Now,

x2N ′±Nb
(a) = xN ′(a)xN ′±Nb

(a) + (a2 − 1) · yN ′(a)yN ′±Nb
(a)

≡ (a2 − 1)yN ′(a)yN ′±Nb
(a) (mod xN ′(a))

≡ (a2 − 1)yN ′(a)[yN ′(a)xNb
(a)± yNb

(a)xN ′(a)] (mod xN ′(a))
≡ (a2 − 1)(yN ′(a))2xNb

(a) (mod xN ′(a))
≡ [(xN ′(a))2 − 1]xNb

(a) (mod xN ′(a))
≡ −xNb

(a) (mod xN ′(a))

From this, we further conclude that x4N ′±Nb
(a) ≡ −x2N ′±Nb

(a) ≡ xNb
(a) (mod xN ′(a)). This

means that xi(a) (mod xN ′(a)) has a period of 4N ′ with respect to the subscript i. The first N ′ val-
ues, mod xN ′(a), are congruent to x0(a), x1(a), · · · , xN ′−1(a). Then xN ′(a), xN ′+1(a), · · · , x2N ′−1(a)
are congruent to 0,−xN ′−1(a),−xN ′−2(a), · · · ,−x1(a),−x0(a), and x2N ′(a), · · · , x4N ′−1(a) are con-
gruent to 0, x2N ′−1(a), x2N ′−2(a), · · · , x1(a) (all mod xN ′(a)). Thus, with the subscript of xi(a)
ranging from 0 to 4N ′ − 1, the sequence looks like this:

x0, x1, · · · , xN ′−1, 0,−xN ′−1,−xN ′−2, · · · ,−x1,−x0,−x1, · · · ,−xN ′−1, 0, xN ′−1, · · · , x1

(“(a)”’s omitted for brevity.) Since xi(a) increases with i, x0(a), x1(a), · · · , xN ′−1(a) actually are
the remainders one gets when dividing x0(a), x1(a), · · · , xN ′−1(a) into xN ′(a). Thus, the first N ′

remainders are all unique (otherwise, xi(a) = xj(a) for i < j < N ′, a clear impossibility).
Now, D5 implies that u | b − a. Since (xNb

(b) − xNb
(a)) ≡ 0 (mod b − a), we have that

xNb
(b) ≡ xNb

(a) (mod u). Combining with D7, xN (a) ≡ xNb
(a) (mod xN ′(a)). We split briefly into

two cases:

Case 1: xN ′(a) is odd.
By the recurrence relation for xi(a), we know that for i < N ′, xi(a) ≤ xN ′(a)/a ≤ 1

2xN ′(a). Thus,
all of 0,−xN ′−1,−xN ′−2, · · · ,−x0, i.e., xN ′(a) through x2N ′(a), are distinct from x0(a), x1(a),
· · · , xN ′−1(a) as well as from each other. Therefore, x0(a), x1(a), · · · , x2N ′(a) form a mutually
unique set of residues mod xN ′(a).

Assume that xi(a) ≡ xNb
(a) (mod xN ′(a)). N | N ′ and N 6= N ′, so N < N ′. This means that

if 0 ≤ i ≤ 2N ′, then i = N , by the result of the previous paragraph. If 2N ′ < i < 4N ′, then
since x4N ′−i(a) ≡ −x2N ′−i(a) ≡ xi(a) (mod xN ′(a)) (same argument as given above concerning
x2N ′±Nb

(a)), i = 4N ′ −N . The periodicity of xi(a) (mod xN ′(a)) then guarantees the following:

xi(a) ≡ xN (a) (mod xN ′(a)) =⇒ i ≡ ±N (mod 4N ′).

In particular, Nb ≡ ±N (mod 4N ′).

Case 2: xN ′(a) is even.
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We would like to show the same result as Case 1, but there is a minor complication. As in Case
1, for i < N ′, xi(a) ≤ xN ′(a)/a ≤ 1

2xN ′(a). Everything, in fact, will work as in Case 1 except for
the case when xN ′−1(a) = 1

2xN ′(a).
If this is the case, then xN ′+1(a) ≡ −1

2xN ′(a) ≡ 1
2xN ′(a) ≡ xN ′−1(a) (mod xN ′(a)), which would

contradict our sought-for result (that is, xi(a) ≡ xN (a) (mod xN ′(a)) =⇒ i ≡ ±N (mod 4N ′)).
However, N < N ′, so since N also divides N ′, N cannot equal N ′ − 1, except in the even more
special case that N = 1, N ′ = 2. But this case is impossible under these circumstances: xN ′(a) =
x2(a) = ax1(a) + (a2 − 1)y1(a) = 2a2 − 1 is not an even number.

Thus, everything really does work as in Case 1, and Nb ≡ ±N (mod 4N ′).

y | N ′, so Nb ≡ ±N (mod 4y). This is the condition on N and Nb that was mentioned
at the beginning of the proof of this direction. Combining it with Nb ≡ n (mod 4y) gives us
n ≡ ±N (mod 4y).

Now n ≤ y (by D1) and N ≤ y (because N ≤ yN (a)), and n and N are both positive integers,
so n + N ≤ 2y and |n−N | < y.

If n ≡ −N (mod 4y), then ∃Z ∈ Z, [n − 4yZ = −N ]. Then n + N = 4yZ, which, taken with
n + N ≤ 2y, implies Z = 0 and n = −N . But this is clearly impossible, as n and N are both
positive integers. Thus, n ≡ N (mod 4y), and ∃Z ′ ∈ Z, [n−4yZ ′ = N ]. Then n−N = 4yZ ′, which
with |n−N | < y implies Z ′ = 0 and n = N . �

yn(a) is Diophantine, and hence, exponentiation is Diophantine also.

5 A compact prime-defining polynomial

The insolubility of Hilbert’s tenth problem is the most celebrated of the consequences of the work
of Robinson, Davis, Putnam, and Matiyasevich. There are many other negative consequences that
fall out of the result, including the seemingly paradoxical fact that, for any specific axiomatization
of mathematics, there is a Diophantine equation possessing two properties: it has no solution in
the positive integers, and this unsolvability is unprovable in the axiomatization. (This is, of course,
an extension of Gödel’s incompleteness results.)

However, there are also positive consequences. One of the most interesting of these is the
existence of a single polynomial whose positive values are precisely the prime numbers when its
variables range over N (this is, of course, just as easily done over Z+, as we have done in this paper
thus far, but allowing 0 does make for simpler expressions in this case). This fact rises immediately
out of the Diophantine nature of the set of prime numbers, as well as the simple observation that
if a set ⊂ N can be defined as the projection of the 0-level of a Diophantine polynomial f onto one
of its coordinates, say, x1, then said set is also equal to the set of positive values of the polynomial
x1[1−(f(x1, . . . , xn))2]. However, trying to construct such a polynomial from the methods presented
in this paper would result in an expression that was, to say the least, unwieldy. Using specialized
techniques can streamline the expression. The most compact known polynomial with the desired
property is derived in [Jones].

The polynomial depends on Wilson’s theorem, which states that k + 1 is prime iff k + 1 | k! + 1.
Thus, a compact Diophantine definition of factorial is required. We begin by eliminating variables
from equations D1 −D8 of section 4:

Proposition: The set defined by the relation y = yn(a) (where n ≥ 1 and a ≥ 2) is a projection
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of the set defined by

x2 − (a2 − 1)y2 = 1
u2 − 16(a2 − 1)r2y4 = 1

(x + cu)2 − ((a + u2(u2 − a))2 − 1)(n + 4dy)2 = 1
n ≤ y

(Note that variables c, d, r have been introduced; these come from the congruences E7, E8, E3.)

We will need the following result, which will be referred to as the “exponential growth” lemma:

Lemma: For e ≥ 1, e3(e+2)(n+1)2 +1 = α2 implies that e− 1+ ee−2 ≤ n. Also, for any β, there
is an n such that β | n + 1 and the given equation is still satisfied.

Proof: Assume n solves the equation. By some algebra, we have α2−(e+1−1)3(e+1+1)(n+1)2 =
1, or α2 − ((e + 1)2 − 1)[e(n + 1)]2 = 1. This is a Pell’s equation; thus, there is some j such that
yj(e+1) = e(n+1). Since e | yj(e+1), yj(e+1) ≡ j (mod e), and j > 0, e ≤ j. By the inequalities
we derived in the last section,

e(e− 1) + ee−1 < (2(e + 1)− 1)e ≤ ye(e + 1) ≤ yj(e + 1) = e(n + 1).

from which the first part of the result follows.
The second part comes from the fact that we can find nontrivial solutions (α, γ) to α2 − e3(e +

2)β2 · γ2 = 1. Then we set n = βγ − 1. �

We also need the following result, which is very similar to one we proved earlier in showing
factorial to be Diophantine (it can be proved in a similar way as well): For n ≥ (2k)k and p > nk,

k! <
(n + 1)kpk

rem((p + 1)n, pk+1)
< k! + 1.

Then we can give a compact definition of factorial:

Lemma: The set defined by the relation ε = k! (α, k > 0) is a projection of the set defined by:

q = wz + h + j

z = ε(h + j) + h

(2k)3(2k + 2)(n + 1)2 + 1 = f2

p = (n + 1)k

q = (p + 1)n

z = pk+1

Proof: Note that (n + 1)kpk = pz/p = z, so the factorial inequality given above can now be
written k! < z/rem(q, z) < k! + 1. Now, suppose we have variables satisfying the equations. Since
q = (p + 1)n and z = pk+1, z does not divide into q, and by q = wz + h + j, 0 6= (h + j) 6= z.
Furthermore, from z = ε(h+ j)+h, we have that h+ j < z, so h+ j = rem(q, z). Then, again from
z = ε(h + j) + h, ε ≤ z/rem(q, z) < ε + 1. Since ε, k! are both integers, f must be equal to k!.

For the other direction, assume ε = k!. We can choose n such that n ≥ (2k)k and the third
equation holds (let β = (2k)k + 1, for example). Then the last three equations immediately
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determine p, q, z. If we set w = (q − rem(q, z))/z, h = z − ε · rem(q, z), j = rem(q, z)− h, then the
equations will be satisfied. �

We now exhibit a set of equations defining the primes. Specifically, for k > 0, k + 1 is prime if
and only if the following equations are satisfied:

P1 : n + l + v = y

P2 : x2 − (a2 − 1)y2 = 1
P3 : u2 − 16(a2 − 1)r2y4 = 1
P4 : (x + cu)2 − ((a + u2(u2 − a))2 − 1)(n + 4dy)2 = 1
P5 : m2 − (a2 − 1)l2 = 1
P6 : l = k + i(a− 1)
P7 : (2k)3(2k + 2)(n + 1)2 + 1 = f2

P8 : e3(e + 2)(a + 1)2 + 1 = o2

P9 : e = p + q + z + 2n

P10 : p = m− l(a− n− 1)− b(2a(n + 1)− (n + 1)2 − 1)
P11 : q = x− y(a− p− 1)− s(2a(p + 1)− (p + 1)2 − 1)
P12 : z = pm− pl(a− p)− t(2ap− p2 − 1)
P13 : q = wz + h + j

P14 : z = (gk + g + k)(h + j) + h

Proposition: Satisfying these equations forces k + 1 to be prime.
Proof: Suppose we have variables satisfying the equations. We recognize P1 − P4 as ensuring

that x = xn(a) and y = yn(a). Also, the first equation guarantees l < y. Then by P5, there is some
k′ < n such that m = xk′(a) and l = yk′(a). By P6, k ≡ yk′(a) ≡ k′ (mod a− 1)

Substituting P9 and P8, and applying the “exponential growth” lemma from earlier gives us:

(p + q + z + 2n)− 1 + (p + q + z + 2n)p+q+z+2n−2 ≤ a

We can deduce a variety of facts from this equation. First of all, n < a. Meanwhile, P7 guarantees
that k < n. Thus, both k and k′ are less than a − 1. implying that k′ = k and m = xk(a) and
l = yk(a).

Also, we have that p < a and (n + 1)k < (n + 1)n < a. If we start from the inequality
(n+1)2+1

2n+1 < n < a, then through some algebra, we have a < 2a(n + 1)− (n + 1)2 − 1, so both p and
(n + 1)k are less than the complex expression.

We now need a somewhat odd congruence:

Lemma: xκ(a)− (a− δ)yκ(a) ≡ δκ (mod 2aδ − δ2 − 1)
Proof: We show this by induction. x1(a)−(a−δ)y1(a) = a−(a−δ) = δ and x2(a)−(a−δ)y2(a) =

2a2 − 1− 2a(a− δ) = 2aδ − 1 ≡ δ2 (mod 2aδ − δ2 − 1), so the congruence holds for κ = 1, 2.
For the inductive step, we note that from the recurrence relations for xκ(a), yκ(a), we can derive

that xκ+1(a) = 2axκ(a)−xκ−1(a) and yκ+1(a) = 2ayκ(a)−yκ−1(a). Thus, xκ+1(a)−(a−δ)yκ+1(a) =
2axκ(a)−xκ−1(a)−(a−δ)[2ayκ(a)−yκ−1(a)] = 2a[xκ(a)−(a−δ)yκ(a)]−(xκ−1(a)−(a−δ)yκ−1(a)).
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By the inductive hypothesis, this last expression is ≡ 2aδκ − δκ−1 ≡ δκ−1(2aδ − 1) ≡ δκ−1δ2 ≡
δκ+1 (mod 2aδ − δ2 − 1). �

Putting in δ = n + 1 and κ = k, then making the m, l substitutions gives us m− (a− n− 1)l ≡
(n+1)k (mod 2a(n+1)− (n+1)2−1). By P10, we have p ≡ (n+1)k (mod 2a(n+1)− (n+1)2−1).
Combined with the known inequalities, we conclude p = (n + 1)k.

In completely analogous fashion, using P11 and putting in δ = p + 1, we have q = (p + 1)n.
From δ = p, we get the result m− l(a−p) ≡ pk (mod 2ap−p2−1). Combined with P12, we have

z ≡ pk+1 (mod 2ap− p2 − 1). Since z obeys inequalities analogous to those for p and q, z = pk+1.
Thus, the final three equations for the Diophantine definition of factorial are satisfied (by the

same-named variables p, q, z, n, k). P7, P13 are exactly the third and first of those equations, re-
spectively, and by P14, letting ε = gk + g + k gives us the second equation. This is all of them;
therefore, gk + g + k = k!.

Then k! + 1 = gk + g + k + 1 = (g + 1)(k + 1), so k + 1 | k! + 1. By Wilson’s Theorem, k + 1 is
prime. �

Proposition: If k + 1 is prime, then there is a solution to P1 − P14.
Proof: (This is basically the reverse of the previous proof but is much easier.) By Wilson’s

Theorem, k + 1 | k! + 1, so there is a g such that k! + 1 = (g + 1)(k + 1). By the Diophantine
nature of factorial, we can choose f, h, j, n, p, q satisfying P7, P13, P14 as well as p = (n + 1)k, q =
(p + 1)n, z = pk+1. Choose e so that P9 is satisfied. By the “exponential growth” lemma, we can
choose a, o so that P8 is satisfied. By the Diophantine nature of yn(a), x, y, m, l (as well as c, d, r, u)
can be found to satisfy P2 − P5. i is then chosen to satisfy P6.

By induction, we can show that n + yn−1(a) ≤ yn(a), so in particular, n + l = n + yk(a) ≤
yn(a) = y (k < n from P7). Thus, we can have a v satisfying P1.

P10 − P12 remain. But by the congruence lemma shown in the proof of the other direction, we
can find b, s, t satisfying P10 − P12. (That b, s, t are nonnegative is shown as follows: We can prove
that for δn < a, we have xn(a) ≥ δn + (a − δ)yn(a), since xn(a) > yn(a)

√
a2 − 1. But we know

(n + 1)k < a, (p + 1)n < a, pk < a, so the result follows.). �

With that proved, we can apply the trick alluded to at the beginning of this section of expressing
each of P1−P14 as an equation with 0 on one side, then taking the sum of the squares of the resulting
polynomials, subtracting it from 1, and multiplying the resulting expression by k + 1. However,
since the condition on k is currently that it must be strictly greater than 0, the slight adjustment
of substituting k + 1 for k everywhere is required to make sure the result holds as all the variables
range over the nonnegative integers. Explicitly, the set of prime numbers coincides with the set of
positive values assumed by polynomial:

(k + 2){1− [n + l + v − y]2 − [(a2 − 1)y2 + 1− x2]2 − [16r2y4(a2 − 1) + 1− u2]2

−[((a + u2(u2 − a))2 − 1)(n + 4dy)2 + 1− (x + cu)2]2 − [(a2 − 1)l2 + 1−m2]2

−[ai + k + 1− l − i]2 − [16(k + 1)2(k + 2)(n + 1)2 + 1− f2]2 − [e3(e + 2)(a + 1)2 + 1− o2]2

−[2n + p + q + z − e]2 − [p + l(a− n− 1) + b(2an + 2a− n2 − 2n− 2)−m]2

−[q + y(a− p− 1) + s(2ap + 2a− p2 − 2p− 2)− x]2 − [z + pl(a− p) + t(2ap− p2 − 1)− pm]2

−[wz + h + j − q]2 − [(gk + 2g + k + 1)(h + j) + h− z]2}

(as its variables range over the nonnegative integers)
Though the polynomial may seem somewhat unwieldy, it was not known that it was possible
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to exhibit such a prime-defining polynomial until Matiyasevich showed the Diophantine nature of
exponentiation in 1970. In fact, before the Matiyasevich result, there was no known method for
proving a number to be prime in a bounded number of steps that did not depend at all on the
number being tested. The equations P1−P14 will provide such a proof, i.e., since satisfying P1−P14

proves k + 1 is prime, we need only make the 87 additions and multiplications of those equations
in order to check k + 1’s primality. This, of course, is of no use in the search for primes because
in addition to k, we need to know appropriate a, b, c, . . . , j, l, . . . , y, z in advance to calculate the
check. Still, it is a result of great aesthetic value.
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