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1 Introduction

Linear algebra deals with the study of vector spaces and linear transformations between
them. These transformations can be represented as matrices, and various properties of a
linear transformation are reflected in the properties of its corresponding matrix. When the
elements of a matrix are replaced by random variables, tools from probability theory can
be used to study the resulting properties of these matrices. This paper presents a survey
of several results in random matrix theory, the study of spectral properties of matrices
with random elements, and analyzes two families of random matrices in a unified way. To
motivate our discussion, we begin with three examples:

Example 1.1 (Nuclear Physics [18]). Consider the nucleus of a large atom (e.g. Uranium-
238). We are interested in determining the energy levels of this nucleus. From quantum
mechanics, the nuclear energy levels E, are given as the eigenvalues of the Hamiltonian
operator H of the system, Hy,, = E,,. Unfortunately, for large atoms, the Hamiltonian H
cannot be explicitly computed and so we cannot explicitly determine its spectrum. However,
we may instead model the system by approrimating the infinite-dimensional Hilbert space
of wave functions with a large finite-dimensional space, and approrimating H by a matriz
operator on this space with random elements. We may then study local statistics of the energy
levels, such as their pairwise joint distributions or distributions concerning the spacings
between them, using this model. By imposing conditions on the joint distribution of the
matriz elements based on the symmetries of the system, we find that the local statistical
properties of the eigenvalue distributions of these random matriz models closely match those
of observed nuclear energy levels in large atoms.

Example 1.2 (Wireless Communications [27]). Consider the transmission of information
over a wireless communication channel. The relation between a vector of transmitted data
x and receiwed data y can be modeled by a linear channel y = Hx +n, where H is a random
channel matriz and n is a vector of random Gaussian noise. An information theoretic
quantity of interest is the channel capacity, an upper bound on the rate of information
transmission over the channel. Suppose that x € C™ and y € C™, and the matric HH* has



eigenvalues A1, ..., \,. Let Fy(z) = L. #{\; < a} be the cumulative distribution function
of the probability mass function of these eigenvalues. Then, under suitable assumptions on
the distributions of x and H, the channel capacity is given by the expected value of
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over the distribution of the channel matrix H. In particular, the channel capacity is depen-
dent on the global distribution Fy of the eigenvalues of HH™*.

Example 1.3 (Financial Portfolio Optimization [16, 21]). Consider a collection of n stocks.
We are interested in understanding the risk associated to a portfolio of these stocks and
in constructing portfolios of low risk. If we model the return of each stock as a random
variable r; and consider the covariance matriz C with entries C;; = Cov(r;,r;), then the
risk associated to a portfolio p = (p1,...,pn) where p; is the amount invested in stock i is
given by p'Cp. Low risk portfolios can be selected to have large components in the directions
of eigenvectors of C' with the lowest eigenvalues. However, by estimating C using the sample
covariance matriz of observed returns for each stock, the noise in the sample matriz can
cause us to misidentify the eigenvectors corresponding to the lowest eigenvalues of C' and
to underestimate the risk associated with the chosen portfolio when n is large. We may use
properties of the global eigenvalue distribution of the random sample covariance matriz to
devise more accurate methods of portfolio selection and adjust for the moise factor in the
computation of risk.

There exists a body of research pertaining to each of these applications of random matrix
theory. It is not the goal of this paper to discuss the details of these applications; we refer
the interested reader to the listed references. We present these examples as an illustration
of the diversity of the range of applications of this theory and as motivation for the specific
families of random matrices and the specific properties of their eigenvalue distributions that
we will examine. In particular, we will focus on two families of random matrices, defined as
follows:

Definition 1.4. Let {a,('?)}neN,lgigjgn and {Bgl)}neN,lgi<]’§n be i.i.d. random variables,
normally distributed with mean 0 and variance 1. Let W, be an n X n matriz for each
n, with diagonal entries (Wy,);; = az(-?) for 1 < i < n, above-diagonal entries (W,);; =
%(agb) + iﬁi(;‘)) for 1 <i < j <mn, and below-diagonal entries (W,);; = %(ag) — iﬁi(;‘))
for1<j<i<n. We call {W,}nen the Gaussian Unitary Ensemble (GUE).

Definition 1.5. L@tp > 1, and let {O‘E;L)}nEN,lgignJSjSLpnj and {ﬁz‘(;l)}neN,lgign,lngLan
be i.i.d. random variables, normally distributed with mean 0 and variance 1. Let Y, be an
n x |pn| matriz for each n, with entries (Yy):; = %(agl) + iﬂi(;l)), and let M, =Y, Y*.

We call {Mp,}nen the Wishart Ensemble with parameter p.

We note that both families of matrices are Hermitian, and that the matrices of the Wishart
Ensemble are, in addition, positive semi-definite. The GUE is relevant as a matrix model for
nuclear energy levels under specific symmetries in Example 1.1, while the Wishart Ensemble
is the model of interest in Examples 1.2 and 1.3.

All three of the examples above deal with random matrices of large dimensionality. In
single-variate statistics, large collections of random variables are analyzed using limit theo-
rems such as the Law of Large Numbers and the Central Limit Theorem. The goal of this
paper is to develop similar limit theorems for spectral properties of interest for the GUE and
Wishart Ensemble, as the matrix size tends to infinity. Our examples motivate the study
of the limit theorems for two distinct spectral properties: the global distribution of eigen-
values, as relevant to Example 1.2, and the local statistics of the eigenvalue distribution,
as relevant to Example 1.1. We will address these properties separately in the subsequent



sections. We will see that the assumption of a normal distribution in Definitions 1.4 and
1.5 is not necessary for our study of the global eigenvalue distribution, but we will rely on
this assumption when we turn to the examination of the local statistics.

A theme of this paper is the unified derivation of our results for the GUE and Wishart
Ensemble, the studies of which had historical origins in different fields of application. Each
section of the paper takes advantage of a similarity between the two families of matrices
to derive a general result, which is then specialized to the GUE and Wishart cases. In
Section 2, we prove the existence of a limit law for the global empirical distribution of
eigenvalues for a class of general band matrices, using a combinatorial and graph theoretic
approach. In Section 3, we use a change of variables formula to derive the form of the
joint density function for eigenvalues of matrix distributions invariant under conjugation by
unitary matrices. Finally, in Section 4, we compute a local correlation function for matrix
eigenvalues in terms of orthogonal polynomials and derive a limit law for this function in
the cases of the GUE and Wishart Ensemble with p = 1.

2 Convergence of the Empirical Distribution of Eigen-
values

We prove in this section the convergence in probability of the empirical distribution of
eigenvalues for a class of general band matrices, and we specialize the result to the GUE and
Wishart Ensemble by an explicit computation of the limit distribution. The result was first
proven for the GUE by Wigner in [28] and [29], and we will follow Wigner’s general strategy
using the method of moments, with the generalizations provided in [2]. Our presentation

draws on [1] and [2]. The class of band matrices we choose to work with is much more
(n)

general than what is needed for the GUE and Wishart Ensemble—we do not require o; y
and ﬂi(;l) from Definitions 1.4 and 1.5 to have normal distributions, or even to be identically
distributed. Specifically, we will consider a class of matrices X,, according to the following

definition:

Definition 2.1. Let s: [0,1] x [0,1] — [0,00) be a symmetric bounded measurable function

with discontinuity set of measure zero. Let {55;1)}%1\1,1@,5” be a collection of random
variables with the following properties:
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For each n € N, let X,, be the matriz with X,,(i,7) = ﬁffjn)

In particular, the GUE scaled by ﬁ satisfies this definition with s = 1. The primary
concern of this section is the following notion of an empirical eigenvalue distribution:



Definition 2.2. Suppose that X,, has eigenvalues A1 < ... < \,. The empirical distribu-

1 n
tion of eigenvalues of X, is the counting measure L,, = — E 0x;.- The mean empirical
n
i=1
distribution of eigenvalues is L, = EL,,.

With this notation, L, is a random measure over our probability space such that L, (S) is
the fraction of eigenvalues of X,, contained in the set S. L, is a fixed measure determined
by our matrix class {X,}, so that L,(S) is the expected fraction of eigenvalues in S for
a random matrix from our matrix class. The central result of this section is the following
proposition:

Proposition 2.3. There exists a measure p of bounded support, symmetric about 0, and
uniquely defined by its moments, such that L, converges weakly, in probability, to u. That
is, for any f € Cy(R) and any € > 0,

7}LII£Q]P<’/den—/fdu’ >5> = 0.

Taking f to be a continuous approximation of an indicator function for an interval .S, this
proposition tells us that for large n, L, (S) = [gdu with high probability, i.e. the fraction
of eigenvalues of X, contained in S is approximately the integral of a fixed density function
over S. Visually, we may view this result as stating that a histogram of eigenvalues of X,,
will, with high probability, converge in shape to the graph of a fixed density function. We
will prove Proposition 2.3 in two steps in Sections 2.1 and 2.2 and explicitly compute the
limit measure p for the GUE and Wishart Ensemble in Section 2.3.

2.1 Convergence in moment of the mean empirical distribution L,

Our proof of Proposition 2.3 is based on a computation of the moments of L, using a
combinatorial analysis. We will use the following definitions:

Definition 2.4. An n-path of length k is a (k + 1)-tuple of indices i = (i1,42,...,ikt+1) €
{1,...,n}**L. The path is closed if ipyq = iy. Let I(i) = k be the length and w(i) =
#{i1,...,igs1} be the number of distinct indices of the path i. Let us consider the path
i=(i1) of a single index to be a closed path with (i) = 0 and w(i) = 1. For any ordered pair
(i,i') of indices, let fi(i,i') = #{j | i; = i,ij01 = i'}. Let by(i,i') = #{j | i; = ¢',ij41 = i}
if i #4 and by(i,id) =0 if 1 =,

Definition 2.5. A Wigner n-path is a closed n-path i with the following properties:
1. Foreach j=1,...,k, fi(ij,i;41) =1 and b;(ij,%;11) = L.
A I6))

We may think of an n-path of length k as a walk of k steps along the edges of the complete
undirected graph of n vertices. Then f;(i,4') and b;(4,4") are the numbers of times the walk
traverses the edge ¢ — 4’ in the forward and backward directions respectively. (If i = ¢/,
we count a traversal of this self-loop as a traversal in the forward direction only.) The first
condition of the definition of a Wigner n-path specifies that the path traverses no self-loops
and traverses each edge along the path exactly twice, once in each direction. Then the
number of undirected edges traversed by the Wigner n-path is @, and hence the second
condition specifies that the subgraph of undirected edges traversed by the Wigner n-path is

a tree.

We consider an equivalence relation on paths under permutation of the vertex labels:



Definition 2.6. Two paths i and i’ are equivalent if there is a bijection ¢ : N — N that
maps i to i’ when applied componentwise. Let [i] denote the equivalence class of i. As paths
in an equivalence class have the same length and number of distinct indices, let I([i]) = (i)
and w([i]) = w(i). Let Cy be the set of equivalence classes of closed paths of length k and
Wi C Ci be the set of equivalence classes of Wigner paths of length k.

We note that this notion of equivalence does not make reference to the size n of the index
set, so an equivalence class C' € Cj contains an infinite number of paths, and the n-paths
belonging to C will be denoted as C N {1,...,n}**L

Lemma 2.7. The moments of L,, satisfy
. )2
. 1]
N Er ey SR SR | CC D K
CeWy ieCn{l,...,n}k+1 j=1

if the limit on the right exists. In particular, lim, fmkdfn =0 if k is odd.

Proof. Letting A\; < ... < A, be the eigenvalues of X,
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*dL, =E |~ ; Al
1
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If By = {(i,¢') | i <4, (i,i') = (ij,1j41) or (¢,i) = (ij,i;41) for some j} is the set of edges

traversed by any closed path i, then
2 fi67) N ICES)
1 = [(@89) (€57) ]

(4,3") € E;

E[¢, &) =

by the independence condition on {55;1)}1‘3]‘. Therefore, since each f ™ has mean Z€ro,
E[fl(z)g -~-£z(:i)1] = 0 for any i that traverses an edge only once. Also, by the bounded
(n)

moment condition on the §;;”,

I e[ @)

(i,i")€E;

(n)

[

fi(d,8")+bi(4,3)
I = |

(i,i")€E;

< Agy

for some constant Af; depending on the equivalence class of i. If C' is an equivalence class
of paths for which [(C) = k and w(C) = m, then there are n(n —1)...(n —m+ 1) paths in
Cn{l,...,n}**1 Thus, if m < & 41, then

1 n) . o nn=1)...(n—m+1)
nh—{r;o nk/2+1 Z {52122 o €7fk11:| = nh_)ngo nk/2+1 - Ac =0.
ieCn{l,...,n}k+1

On the other hand, if each edge in Ej is traversed at least twice, then i traverses at most %
edges, and hence m < g + 1. Equality holds when each edge is traversed exactly twice and



w(i) = @ + 1, i.e. the subgraph traversed by i is a tree. A path that traverses each edge of
a tree exactly twice must traverse each edge once in either direction, so i is a Wigner path.

Thus
; k (n) g(n)=*
Jim [ @tdL, = lm s nk/2+1 > > [T e,
CeWr ieCn{l,...,n}k+1 (4,¢/)EE;

5(") 2

i3/

i1’

if the limit on the right exists. As E [5(”)5”, ] =E {

] =35 (%, %), this gives the
desired result. If k£ is odd, then Wj, is empty, so the limit is 0.

Let us recall the following solution to the classical Hamburger moment problem, whose proof
can be found in [23]:

Lemma 2.8. Given a sequence of real values {my}72, there exists a Borel measure (1 with
moments ffooo xFdp = my, if and only if the k x k Hankel matriz {hijto<ij<rk—1 given by
hij = miyj is positive semi-definite for each k.

These lemmas are sufficient to show that the mean empirical eigenvalue distributions L,,
converge in moment to a fixed measure p:

Proposition 2.9. There exists a Borel measure p of bounded support, symmetric about 0,
such that for all k > 0,

nlLrI;o 2*dL, = /xkdu.
Proof. Let us fix C € Wy, with m = g +1 =w(C). Let i € C be the Wigner path such
that the distinct indices of i, in the order in which they are visited, are 1,2, ..., m. Define
a function fo : [0,1]™ — [0,00) by fo(z1,...,Tm) = Hle s(ﬂcijc,acijcﬂ)l/2 if k> 1, or
fe(x1) =1if kK =0. Then f¢ is bounded with discontinuity set of measure zero, because
the same properties hold for s and z #+ ZJ+1 for any j if i is a Wigner path. So fo is
Riemann integrable, and we have

1 1
/0 /0 fe(xy, .. om)day .. dzm:nlggonfm Z fc ﬁ,,%’l)

r1=1 =1
n
= hm _ Z1 Tm
o 1 E fC ( ) Fey ) )
L1, Tm=1
T1F...FTm

where the second equality holds because fco is bounded. But by the definition of f¢,

n i i\ M2
T Ly, —
> fo(B )= > ||8(’ ”) ;
T1,eTm=1 icCn{l,...,n}k+1 j=1
T1F.. . FTm

which is the quantity appearing on the right hand side of (1) in Lemma 2.7. Thus the limit
in Lemma 2.7 exists, and we have

lim [ z*dL, = Z E[fc]

n— 00
CEWY

for even k, where E[fc] denotes the average value of fo over [0,1]™. For each n, the k x k
Hankel matrix of moments for L,, as defined in Lemma 2.8 is positive semi-definite for all
k. As all moments of L,, converge as n — oo, the limits of these k x k Hankel matrices as
n — oo exist and must also be positive semi-definite for all k. Hence there exists a Borel
measure ; whose moments are the limits of those of L,,, by Lemma 2.8.



To show that p has bounded support, let us compute the size of Wy. Consider the map
¢ : Wy — ZF! such that ¢([i])1 = 0, and ¢([i])j4+1 = @([i]); + 1 if (ij,i;41) is the first
traversal of that edge in i and ¢([i])j+1 = ¢([i]); — 1 if (j,7;41) is the second traversal
of that edge in i, for each j = 1,...,k. Then ¢([i])s+1 = 0 and ¢([i]); > 0 for all j,
ie. ¢([i]) is a Dyck path. It is straightforward to verify that ¢ is a bijection between
Wigner paths and Dyck paths, the latter enumerated by the Catalan numbers. Hence, for

even k, |Wy| = ﬁ(,ﬁ%) < 2%, Together with the bound E[fc] < (||$||i</32)k7 we obtain

. k
that lim, o [2¥dL, < (2(Hs||<1>é2)) , S0 p is supported on [—2(||s||¥2),2(||s||3;é2)} It is
symmetric about 0 because its odd moments are 0 by Lemma 2.7. O

2.2 Convergence of the empirical distribution L,

To conclude the proof of Proposition 2.3, we extend our notion of path equivalence to an
equivalence relation on pairs of paths:

Definition 2.10. Two ordered pairs of paths (i,i') and (j,j') are equivalent if there is a
bijection ¢ : N — N that maps i to j and i’ to j' when applied componentwise. Let [(i,i’)]
denote the equivalence class of (i,i'). Let Py be the set of equivalence classes of pairs of
closed paths of length k.

The following lemma shows convergence in probability of the moments of L,, to those of L,,:
Lemma 2.11. For alle > 0 and k > 0,

lim P (’/mden —/xkdfn > 5) =0.

Proof. As E[[a*dL,] = [ *dL,,, Chebyshev’s inequality gives
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If By = {(i,¢') | i <4, (i,i') = (ij,4j41) or (¢,i) = (ij,i;41) for some j} is the set of edges
traversed by any closed path i, then

fi(isi") bi(3,4")
(n) (n) | _ (n) (n)*
elenen] = T [(e)™ (@)™

(i,3") € E;



and

n n n n n fi(i,i/)+fi/ (i,i,) n)x bi(i,i/)-i-bi/(’i,i/)
sl )= T s )
(i,¢")€E{UEy

by the independence condition on {557)}@ ;. Hence for any pair of paths (i,1’) that together
traverse an edge only once, the corresponding term in the sum in (2) is 0, and any other
pair of paths traverses at most k distinct undirected edges. Also, for any pair of paths (i,1')
for which E; and Ej are disjoint, the corresponding term in (2) is 0 since

)\ A F i ) N s )by (i)
[I () (&)

(i,i/)EEiUEi/
_ H E [(6(?))fi(iyi’) (5(?)*>bi(ivi'):| H E |:(€(?)>fi’(i7il) (5_(7)*>bi’(i»i/):| .
(3,4")EE; (4,3’ )EEy

Any pair of paths for which E; and Ej are not disjoint is such that the undirected edges
of E; U Ey form a connected subgraph. Hence any equivalence class C of closed path pairs
that contributes to the sum in (2) defines a pair of paths with at most k+ 1 distinct indices,
and so #{(i,1") € C} <n(n—1)...(n — k). Together with the bounded moment condition

(n)

on ;;, this implies

P (‘/wden - /x’“dLn‘ > 5) sk A

g2nk+2 [i,i')€ Py

for a collection of bounds Aj; 3. Taking the limit as n — oo gives the desired result. O

Proof of Proposition 2.3. By Proposition 2.9, L, converges in moment to a measure f,
symmetric about 0, of bounded support. Suppose that u is supported on [—C, C], and set
B > max(1,C?) > C. Given any bounded continuous function f, there exists a polynomial
@ such that g = f — Q satisfies sup|, < |9(z)| < /8 by the Weierstrass approximation

theorem. Then we have
; ‘/QdLn—/Qdu’

‘/f dLn_/fd,U‘ < ‘/911|m|<3 dLn—/g]lmgB du‘ + ’/91|x|>3 dLy,
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+P(‘/Qdf4n—/62du‘ > i) .

As f is bounded, Q is a polynomial, and B > 1, there exists some k such that g(z) < |z|¥

on |z| > B. Then
€ k 5 4 b _

by Markov’s inequality. Cauchy-Schwartz’s inequality then gives

/|~T|k1\x|>3 dL, < \//kadLn\//prB dL,,
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and Chebyshev’s inequality gives
. 1 _
/11‘z|>3 dL, = L, {|z|* > B*} < B 2?*dL,.

Hence, by Proposition 2.9,

2% T 2k 2%
>z>< . 4 [z dLn:4f:r d,ugélC

lim sup P (‘/ |2|*1jy)> 5 dLy, Bk cBk eBk’

n—oo

We note that P (| [ [#|*1 4> dLs| > £) is increasing in k as B > 1, and limj . ac?t _

Bk
because B > C?. Thus :
g . k
> = lim P |2|"1|z)>B dLn,

lim P <‘/g]lx|>3 dL, > Z) —0.
lim P(‘/QdLn—/QdLn > Z) —0,

By Lemma 2.11,
. — €
lim P(‘/QdLn—/Qd,u >) =
n—oo 4

Putting this together gives the desired result,

nligoP(‘/den—/fdu >€> =0.

We note that as the weak limit y of L,, must be unique and the only information we used
regarding p was the values of its moments, p must be uniquely defined by its moments. [

and by Proposition 2.9,

2.3 Computation of the limit distribution of L, for the GUE and
Wishart Ensemble

Recall from the proof of Proposition 2.9 that the limit distribution g has moments
[atdu= 3" Bife)
CeWy

where, for each C € Wy, fc : [0,1]*/2+1 — [0, 00) is the function

k
1/2
fo(xy, .. opj0q1) = Hs (xif,xijcﬂ) (3)
j=1
for i = (zlc, e ig—&-l) the path in C' whose distinct indices are 1,2, ..., g + 1 in the order

visited (or fe(z1) = 1 if & = 0). If we suppose that s = 1 as in the case of the GUE,
this immediately gives the k" moment of y as [W;|, which we computed in the proof of
Proposition 2.9 to be the Catalan number C} /2. This was the original argument of Wigner
in [28] and specifies the limit measure p. To achieve greater generality, we will follow the
steps of [2] and first prove the following proposition, which will be of use in the computation
of the limit distribution y for Wishart matrices:

Proposition 2.12. For each x € [0,1], define a formal power series

O(z,t) = Z ( Z Elfc(z1,. .., 2pj041)|21 = x]) tht1,

k=0 \CeWy



Then {®(x,t)}zep0,1] 45 the unique collection of formal power series with constant term 0
and linear coefficient 1 for all x that satisfies the identity

-1

O(z,t) :t(l—t/ols(m,y)<1>(y7t)dy> : (4)

where the right-hand-side is short-hand for its formal power series expansion in t.

Proof. Let us denote fo(z) = E[fo(z1,. .. ,Tp/241)|21 = x]. For any C' € W, with [(C) =
k>0, let i = (i1,i2,...,%k,41) be a path in C' and let j = max{j < k| ¢; = i1}. Then
iy # iy for any j < j° < k and, viewing i as the traversal of a tree, we see that ;41 = iy.
Let C1 € Wj_1 and Cy € Wy_;_1 be the equivalence classes of the paths (i1,42,...,7;) and
(44158542, - .., i) respectively. (We note that we might have j =1 and [(C;) = 0.) Then,
by the definition of f in (3), we have the recursive identity

fela) = / $(2,2541) for (2) fon (@141)d 1. (5)

As the correspondence between W, and Uf;ll W;_1 x Wy_,_1 sending C to (C1,C>) is a
bijection, we may sum over all equivalence classes of Wigner paths of length &k to obtain

k—1 1
S h@w= Y ¥ [ seain@iaw.

CeWy J=1C1EW;_1 C2€EWg_j_1

Then

_ i( > fc(x)) Rt (1 t/o1 s(%@i( > fc(y)> t’”ldy)

k=0 \CeWy k=0 \CeWy
) B k—1 1 B ~

S Y o) - > [ stwaie@ie iy ¢+
=0 | CEWk j=1 01€Wj71 CzEWk,j,1 0

since for k = I(C) = 0, fo(z1) = 1 for all x;. Rearranging gives equation (4). To see
that this family of power series is unique, we note that if (1 + ait + ast? +ast® +...)7 ! =
1+ byt + bot? + ..., then each b; = —a1b;_1 — asb;_o — ... — a; is defined as a function of
{a1,...,a;,b1,...,b;_1}. Hence, equation (4) specifies the coefficient of t* in ®(z,t) as a
function of the coefficients of ¢/ in ®(y,t) for all y € [0,1] and j < k — 2. So fixing the
condition that the constant term of ®(x,t) is 0 and the linear coefficient is 1 for all z € [0, 1]
uniquely specifies ®(z,t), and the linear coefficient of ®(z,t) is indeed 1 as it is equal to
fo(z) for the zero-length path C. O

2.3.1 The GUE and the semicircle law

Proposition 2.12, along with the fact that the £*" moment of the limit distribution x is given
by the coefficient of t*+1 in fol ®(x,t)dz, allows us to compute p for specific matrix classes.
We will see that for the GUE, u is the following semicircle law supported on [—2, 2]:

Lemma 2.13. Consider the semicircle law o(x)dx given by the density function

1 —
O’(IL’):% 47$2]].|7;‘§2.
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Then the odd moments of o(x)dx are 0 and the even moments are

/m%a(m)dx =C}
where Cy, is the k* Catalan number.
Proof. For all k, integration by parts gives
/2 /2 1 /2
/ sin?* § cos? 0 df = / (cos ) (sin% fcosfdf) = —— / sin?**+2 9 df.
—m/2 —m/2 2k+1 —7/2
Substituting x = 2sin f gives

1 2 22k+1 /2
/xzkd(x)dx =5 / 22 N4 — x2de = / sin?* 0 cos? 0 df
T J—2

™ —m/2

22k+1 /2 oo
= — sin 0do.

On the other hand,

22k+1 /2
/x%o(x)dx = / sin?* 6 cos® 0 df
T —m/2

22k+1 /2 w/2
= / sin?* 0 dh — / sin?**2 9 49
T —7/2 /2

92k+1 /2
= / sin?* 0. df — (2k + 1) / %o (z)d,

T —m/2

SO

22k+1 w/2 409k — 1
/x%a(x)d:n = 7/ sin?* 0 df = 42k —1) /x2k720(x)dx

2k +2)7 J /2 2k +2
_ 2k(2k—1) k2
= G+ Dk /x o(x)dz.

This recursion with the initial value [ o(z)dx =1 gives the result

2k)! i
/x%“(x)dx - k!((k+)1)! - k:(j-)l = O

Then we have the following theorem:

Theorem 2.14. Suppose fol s(z,y)dy = 1 for all x € [0,1]. Then L,, converges weakly, in
probability, to the semicircle law o(x)dx.

Proof. Given C € W, we define fc(x), C1, and C5 as in the proof of Proposition 2.12.
Supposing that fe, and fo, are constant over x € [0, 1], equation (5) gives

felz) = / $(2541) fon (@) o (250)d2s 41 = o (2) fea (@) / s(w.y)dy = fo, (1) feu (@),

which is also constant over x € [0,1]. As fo(x) =1 for I(C) = 0, induction on I(C) gives
that fo is constant over x € [0,1] for all equivalence classes C' of Wigner paths. Then
B, t) = Y020 Y cew, fo(@)th ! is independent of z, so we may write ®(x,t) = O(t).

11



Equation (4) in Proposition 2.12 thus becomes O(t) = t(1 — tO(¢)) !, which we may solve

to obtain _

o = = (©)
as the solution whose power series has constant term 0 and linear coefficient 1. We note
that, letting a; be the coefficient of #/ in the power series expansion of 17731;4'52, o) =
t(1 —tO(t))~! gives a; = 0 for even j, a; = 1, and the recurrence aski1 = asg—1a1 +
G2k—3a3 + ...+ ajagk—1. Hence this defines agg41 as the k2 Catalan number. These are

precisely the moments of the semicircle law, so the result follows from Proposition 2.12. [
Setting s = 1 gives the result for the GUE:

Corollary 2.15 (Wigner [28, 29]). Let {W,}nen be the GUE, and let LY be the empir-
ical eigenvalue distribution of ﬁWn Then LY converges weakly, in probability, to the

semicircle law o(x)dzx.
2.3.2 The Wishart Ensemble and the law of Marcéenko-Pastur

We conclude the discussion of convergence of the empirical eigenvalue distribution by using
Proposition 2.12 to compute the limit distribution p for the Wishart Ensemble.

Lemma 2.16. Letp > 1, let A =0, ﬁ), and let B = [ﬁ7 1]. Suppose s =0 on A x A
and B x B, so that for each n, X,, is of the form
0 Y,
%=l 5]
where Yy, is a [ 5] x [{55 | matriz. Suppose furthermore that
[ sty = 15(a), [ sty = p1a),
B

Then L, converges weakly, in probability, to a measure u defined by

1 / f(y)**\/4p — (y2—p—1)2dy

(p“r 1)71' 7/2:/%—1’g2 ‘y|

[ an=rK50)+ (7)

for some constant K.

Proof. Given C' € W, we define fo(x), C1, and Cy as in the proof of Proposition 2.12.
Supposing that feo, (z) = ]lA(a;)f(‘;“1 + ]ljg(x)fg1 and fo,(x) = ]lA(J:)fgz + 1p(x) gz for
constants fé‘l, fCBl7 f&, fg;, equation (5) gives

1
Felw) = | sty fer @) er(rsa)dasin
0
1 ~ ~ ~ ~
= [ st (La@F + 16@)7E) (L) T4 + o) 7E,) dy
0
— (1a)7, + 16178, ) (72, [ stody+ 78, [ stany)
B
= 1a(2)f&, fEp + 1e() f5 14,
As fe(x) =1 for I(C) = 0, induction on I(C) gives that fo(z) = 1a(x)f& + 1p(x)fE for
some constants f&, f& for all equivalence classes C' of Wigner paths. Then we may write

D(x,t) = 1a(x)Pa(t) + 1p(x)Pp(t), and Equation (4) in Proposition 2.12 becomes

L1a(z)@a(t) + 1p(2)@p(t) = t(1 — 1p(z)tPa(t) — p]lA(x)tch(t))*l.

12



Taking ¢ € A and = € B, we may separate this into a pair of equations ®4(t) = t(1 —
pt®p(t))~! and ®p(t) = t(1 —t®4(t))~!, and solve for ®4(t) and p@p(t) to obtain

1+ 1% —pt2 — /(1 — 2 + pt2)2 — 4pt2

Dy(t) =

A() 2t B
1— 12+ pt? — /(1 — 2 + pt2)2 — 4pt2

P (1) = p \/(Qt pi2)? — 4pt?

/‘b(x,t)dx = p+1 (®a(t) +pPp(t))

1— /(1 — 2+ pt2)2 — 4pt2
(p+ 1)t ’

We may write
2
(L=t +pt?)? —dpt? =1 -2(p+ 1)? + (p— 1)*t* = (1 — (p+ 1)t?)" — 4pt™.

Let us set O(t) = 1=v1=4= A2 — S0 Ot +1 from (6) in the proof of Theorem 2.14, whose
coefficients C, are the momentb of the semicircle law o(z)dx. Then

o ( /Pt ) 1= (p+ 1) — /(1= (p+ 1)t2)2 — dpt?
I—-(p+1t2) 2,/pt> '

Noting that Egl) = /Pt + (p+1)t* + (p+1)*°+...) and expanding the composition

of power series,

t/@@me=t<1+;iﬁ@(lsznﬂ))

oo |55
:t—|— Z
=1

where we have used the fact that the number of partitions of k into ordered (27 + 1)-tuples
of positive integers is (k;jl). Then Proposition 2.12 implies that the limit measure p of the
empirical measures L,, of X,, has even moments

e k-1
C pj+ p + 1)k 1-2j < >t2k+1
j=0 2j

L522)

2p k—1
2% 5 _ k—1-2j
/I an p+1ZC’]p (p+1) (23)
9 L5574
/ Z ( ) )Iszj (p+1)F1729\/4 — 22 dx
Qk 1 ' ) .
p+1 / ( ' )x]ﬁ(‘pﬂ)k_l_]'zl_ﬁdx

- _Pr / (\fx+p+1 mdx

(p+1)m
for k > 1. Making the substitutions y = (\/pz +p + 1)/ and y = —(\/pz +p + 1)1/2, we

have
2-p—1\? 2y
xzkdu_ p / y2k—2 4_<y p ) 29y
/ 2(p+ 1w ‘Lfﬂg P VP

2k _ 2 oy 2
1 / y?\/Ap — (2 —p —1) .
|y —p 1|<2 |

T (p+ yl
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If we set K so that

1 dp— (2 —p—1)°
/ Vip—(? —p Pa=1- K,
(p+ 1) Jjs2pt| o [yl

then we note that the measure defined as in (7) has the same moments as the limit measure
w of L,, so the result follows from Proposition 2.3. O

This lemma allows us to compute the limit empirical eigenvalue distribution for the Wishart
Ensemble:

Theorem 2.17 (Marcenko, Pastur [17]). Let {M,}nen be the Wishart Ensemble with
parameter p, and let LM be the empirical measure of %Mn Set a = (/b — 1)% and
b= (y/p+1)?* Then LM converges weakly, in probability, to the Marcenko-Pastur law
warp(x)dx with density
(x —a)(b—x)
2mx
Proof. Suppose M, =Y,Y as in Definition 1.5, and let

pavp(z) = Lia,p)-

0 Ly
_ Jnin
Xnﬂpnj = \}EY; 0

Let A = [0, 17) and B = [17,1]. Then we note that the conditions in Definition 2.1 are
satisfied for X, 4 |, with s(z,y) = 0 if (z,y) € (A x A) U (B x B) and s(z,y) = p+1
if (z,y) € (A x B)U (B x A). Thus, by Lemma 2.16, the empirical eigenvalue measures

Lyt pn) of Xy pn) converge weakly, in probability, to the distribution u given by (7).

We note that if Y, has rank r, then M,, has rank r and X,,; |, hasrank 2r. It X, |, [Ul} =

V2
)\Ul U1 . _)\’Ul 1 1 1 * _\2
[)\UJ’ then Xt |pn) [_U2] = { AU } and wMyv = %Yn . ﬁYn v1 = A“v;. Hence the 2r

nonzero eigenvalues of X, |,,| come in oppositely signed pairs, and the r nonzero eigenval-
ues of %Mn are the squares of those of X,,|,,|. This implies that for any g € Cy(R) with

g(0) =0,
(n+ Lpn)) - / 9(2%) Loy oy (d) = 21 / o)L (dx).
Then

[o@ritn 5202 [ gt

1 9(@)Vip— (@ —p—1)°
2m J| 2=t <2 ||

1 /2ﬁ+p“ 94— (y—p— 1)2dy
T J 2 /ptp+1 2y '

Setting a = (y/p — 1)? and b = (/p + 1), we can write this as
b — j—
/g(m)LTAL/I(dx) ﬂ/ 9(@)y/ (@ = a)(b =) dx.

2rx

We may check that the integral on the right evaluates to 1 for ¢ = 1, so in fact this holds
for all g € Cy(R). Thus LM converges weakly, in probability, to uyp (7)d. O

Let us remark before continuing that these results can be strengthened in various ways. It
was shown in [17] using a Stieltjes-transform method that the convergence in Theorems 2.14
and 2.17 in fact hold almost surely. The condition of all moments finite in Definition 2.1
can be weakened; see [4].
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3 Joint Distribution of Eigenvalues

The convergence of the empirical eigenvalue distribution provides us with a global histogram
picture of the eigenvalues for the GUE and the Wishart Ensemble, and the combinatorial
approach used in the previous section holds more generally for matrices whose entries are
not normally distributed. If we make use of the normal distributions in Definitions 1.4 and
1.5, then we can obtain information that is much more precise regarding the eigenvalue dis-
tributions. Recall from the spectral theorem that any Hermitian matrix H can be factored
as H = UDU™, where U is a unitary matrix whose columns are eigenvectors of H, and D
is a diagonal matrix containing the eigenvalues of H. If we parameterize U and D with
real variables, we may view this as a change of variables formula from these variables to the
entries of H. The distribution of matrix entries for H thus induces a distribution over our
parameter space for U and D, and in particular this allows us to derive the joint distribution
of eigenvalues of the matrix. We will detail these steps in this section and derive the joint
distribution of eigenvalues for matrices invariant under unitary conjugation, including ma-
trices in the GUE and the Wishart Ensemble. Our presentation draws from [1], [5], and [18].

Throughout this section, we will work with the following parametrization of the space of
Hermitian matrices:

Definition 3.1. Let H,, be the space of n x n Hermitian matrices, parameterized by the n>
real variables oy = (Hp)ii for 1 < i <n and a;; = ﬂRe(Hn)ij and Bi; = ﬂIm(Hn)ij
fori<j. Let p: R — H,, be this parametrization map, and endow H,, with the measure
dH, = H?:l do; HKJ- do;jdB;; induced by Lebesgue measure on the parameter space.

Let us observe that

n n
trHy = Y0 HigHyi =Y Hi+2 37 (Re(Hiy)® + Im(Hiy)*) = o™ (H) I
i,j=1 i=1 1<i<j<n

under this parametrization. We note that dH,, satisfies invariance under unitary conjugation
in the following sense:

Proposition 3.2. Let U, be a unitary matriz and consider the map H,, — G,, = U, H,U}:.
Then dG,, = dH,, i.e., the Jacobian of the transformation ¢~ (H,) — ¢ 1(G,) has deter-
manant 1.

Proof. Let us denote u : R" — R" as the transformation u(z) = ¢ Y (Unp(x)U}) that
sends o~ (H,) to 9 1(G,). Aswis linear and |[¢ 1 (H,)||3 = tr H2 = tr G2 = ||~ (G, ||3,
this shows that ||z||> = |luz|2 for all z € R"". Hence u is orthogonal and |detu| =1. O

As a result, any distribution of random Hermitian matrices of the form f(H)dH where f
is dependent on only the eigenvalues of H is also invariant under unitary conjugation, and
we will see that the GUE and Wishart Ensemble are examples of such distributions. For
such matrices, we may use a change of variables idea to compute the joint distribution of
eigenvalues. To make this idea rigorous, we will need the following technical lemma, taken
from [1], regarding the parametrization of unitary matrices:

Lemma 3.3. Let U, be the group of n x n unitary matrices and D,, be the group of n X n
real diagonal matrices. Let A={ N € R™ | \y > ... > A\, }, and let d: A — D,, map X to the
matriz with X along the diagonal. Then there exists a set O C R™"=Y of full measure and
a smooth, injective parametrization p : O — U, such that the map v : A x O — H,, given by
v\, z) = p(z)d(N)p(x)* is smooth and injective with image of full measure in H,,.
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Proof. Let V,, C U,, be the set of unitary matrices with nonzero leading principal minors
and nonzero diagonal entries, and consider the map ¢ : V,, — R™™~1) defined as

U 0 Uln
. . U12 U12 Uin Uin U23 U23
q Do = Re—=,Im —=,...,Re —,Im —*,Re —,Im —=,
Uil Uil Uil Uil U22 U22
Upl = Unpn
U2n, U2n Un—1,n Un—1,n
...,Re =" Im —=,... Re N >
U22 U22 Un—1,n—1 Unp—1,n—1

Let O be the image of ¢. For any « € O, set v;; = 1 for ¢ = 1 to n and v;; = Re Z—J—HImZ—J
for i < j, and define recursively

—1

V11 s V1,i—1 V14 cee Vin —Vi4
(Uih ce a/Ui,ifl) =
Vi—1,1  Vi—1,-1 Vi—1,4 °°° Vi—ln —Vin
for i = 2,...,n; this is the unique way to complete the matrix V' = (v;j)1<; j<n to have

orthogonal rows. Hence the i row of V is a scalar multiple of the i*" row of U, and so
the inverse matrices used in the construction exist because U has nonzero leading principal
minors. In fact, R*"~1D\ O is precisely the set such that one of the leading principal minors
of V or a diagonal entry of V is 0. As the entries of V' are rational functions of the entries
of q(U), RN\ O is Zariski closed in R*™~1) and hence has zero measure. For z € O,
let p(x)i; = vi;j/||(vi1, ..., vin)||2, so that p(z) € U,. By the uniqueness of the construction
of V, p is injective (and smooth). Indeed, we note that p(¢(U)) is the matrix whose rows
are multiples of those of U with positive real diagonal entries.

We see that ~ is smooth since p is smooth, and it is injective since the parameter vector
(z, A) uniquely determines the eigenvalues and eigenvectors (up to scalar multiples) of X if
the elements of A are distinct. Consider the set G of matrices X € H,, that can be factored
as X = UDU*, where U is unitary with all minors nonzero and D is diagonal such that
[Lic; Dii # I1;c; Disi for any two nonempty subsets I,.J C {1,...,n} of the same cardinal-
ity. In particular, U has nonzero entries and nonzero leading principal minors and D has
distinct diagonal entries, and we may choose D such that the diagonal entries are strictly
decreasing and U such that the diagonal entries are all positive real. Hence G is contained
in the image of ~.

To see that G and hence the image of v has full measure in ‘H,,, consider for each X € H,
and each r = 1,...,n the (Z) X (:f) matrix X (" indexed by pairs of r-element subsets of

{1,...,n} such that X}TJ) = det X, the minor corresponding to the submatrix of rows
indexed by I and columns indexed by J. We note that X(* = (X*)(") so X(") is Hermi-
tian, and (XY)") = XY as det(XY)rs = Y g ny . x|=r det X1i det Y by the
Cauchy-Binet formula. Hence, if X = UDU*, then we may factor X(") as U D))+
where U(") is unitary and D) is diagonal. The set H,, \ G is characterized by the matrices
such that two diagonal entries of D(") are equal for some r or an element of U") is zero for
some .

The condition that D(") has a repeated diagonal entry is the condition that the discriminant
of the characteristic polynomial of X (") is zero, which is a polynomial condition on the entries
of X and hence of X. Supposing that X (") has distinct eigenvalues, let A be one such
eigenvalue with eigenvector v, let A = X" —\I, and let AU:3) be A with row 7 and column
j removed. Then AA*Y = (det A)I = 0 where A?fj = (—1)""7 det AU) and A has kernel
spanned by v so each column of A4 is a nonzero multiple of v. Then v; = 0 if and only
if A% =0, which holds if and only if A is also an eigenvalue of A(*?). Hence an entry of

16



U is zero if and only if A and A% have a common eigenvalue for some 7, which is the
condition that the resultant of the characteristic polynomials of A and A®% is 0. This is
a polynomial condition on the entries of A and hence of X (" and X. So the set H,, \ g
corresponds to a Zariski closed subset of the parameter space {a;;}i<; U{Bij }i<; of Hy and
hence has zero measure in H,,. O

Proposition 3.4. There exists a constant C' such that for any function f : H, — R that
can be written as f(H,) = g(A1,...,A\n), depending only on the eigenvalues A\ > ... > A,
of H,, we have

/f(Hn)dHn =C g1, ) [T = Ap)%dAs . d,.
A12--42)\77, l<]
Proof. Extending g : R* — R to f : R” — R given by f(/\l,...,)\n,ajl,...,xn(n_l)) =
g(A1,...,\n), we have by the preceding lemma that

/{A . }Xof|D(<p_1o'y)|d)\1...d)\ndxl...dacn(n,l) :/f(Hn)dHn

for a full-measure subset O C R™™~1Y and smooth, injective parametrization y(\,z) =
p(z)d(\)p(x)*, where p(x) is unitary. Consider the linear map r, : R"* — R"* such that

ra(v) = 071 (p(2)* 0 (v)p(x)). As [[v]|5 = tro(v)? and tr(p(z) “e(v)p(z))? = trp(z)*p(v)?p(z) =
tr p(v)?, 7, is orthogonal and |det r,| = 1. Then |D(p "t oy(\,x))| = |r - D(¢~ L oy(\, ))].

We have, for each k, the matrix equation

ov(\zx) od(\ B
T\k = p(x) e p(x)",

N

and hence the column rgyga’l (%’\:)) of rmoD(cp*IO’y) is given by agr = 1 and a5, B;; = 0

for all other 4, j. We also have, for each k, the matrix equation
oy(\, x op(x . ap(z)\" X X
oet) = S (e + ) (B ) = plo) ()N + A a) (o)

8:3;6 8xk 8l‘k

for sp(z) = p(z)*agg). We note that p(z)*p(z) = I for all z, so si(z) = —si(x)*. Then
se(x)d(N) +d(N)sk(z)* = sk(z)d(A\) — d(N\)sg(x), and the column 7, - =1 (%’?) is given
by x;; = 0 for all ¢, and x;; = (A\; — X\i) Re(sx(2)s5) and yi; = (A; — A;) Im(s(x);;) for all
i < j. Putting this together, we have that

D¢~  oy(A\,2))| = |re - D(¢™ " oy(A,2))| = e(w) - [Ty = M)

1<j

for some function ¢ depending only on z. Then

/f(Hn)dHn: g(Al,...,)\n)H(Ai—)\j)Qd)\l...d)\n/ c(@)day ... dp(m_ 1)

A1>.. > A i<j o
=C g, ) [T = Aj)%dAs . d,
A >An i
for a constant C' = fo c(x)dzy ... dT, 1) 0

This proposition gives us the joint density function of eigenvalues for any matrix ensemble
exhibiting this type of unitary invariance.
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3.1 Joint eigenvalue density for the GUE
By Definitions 1.4 and 3.1, we see that W,, from the GUE has the distribution

ool 3| et )| ILaw IT sy = et tiam,

(27T)nT 1<i<j<n 1<i<j<n 1<i<j#n 1<i<j<n 2
This gives the following result for the GUE as an immediate corollary of Proposition 3.4:

Theorem 3.5 (Ginibre [12]). Let W,, be the n x n matriz of the GUE, with eigenvalues
A1 > ... > An. Then the joint distribution of these eigenvalues is given by the density
function

P A) =CTas o, [ =) 1‘[ —3N

1<i<j<n
where
C= / =22 T e 2 an,
A2 1<E<n 11;[1
3.2 Joint eigenvalue density for the Wishart Ensemble

In the case of the Wishart Ensemble, we must first derive the form of the distribution for
the matrix entries. This result was first obtained by Wishart for real matrices in [30] and
extended to the complex Wishart distribution by Goodman in [14]; our proof follows the
ideas from that of the real Wishart distribution in [3].

Proposition 3.6. Let P, be the space of positive-definite Hermitian matrices. Then M,,
the n x n matrix of the Wishart Ensemble with parameter p, has the distribution

C-1g,ep, (det Hn)U’”J*nef o Ho gy

for a constant C.

Proof. Let m = |pn|. Suppose M, = Y, Y, as in Definition 1.5, and let Y,, have rows

v1,...,U, with v; € C™ for each i. Taking the standard inner product (v, w) = v*w, let
wy, ..., W, be the orthonormal vectors obtained through Gram-Schmidt orthogonalization
on vq,...,Un, Le., wy = v1/||v1|| and

v; = 05 (v wy)w;

w; =
lvi — 32520 (v, wy )y |
for ¢ = 2,...,n. This gives us the factorization Y,, = T,U,, where T,, is an n X n
lower-triangular matrix and U, has orthonormal rows wi,...,w,. Hence M, =Y, Y =

T, U, UTy = T,T;. The entries of T;, are given by t;; = (v;,w;) for i > j and t; =
i—1

l[vs = 37521 (viy wj)w;|| > 0.

We note that each v; is of the form %(xﬂ +iyi1, ..., Tim + iYim), where each z;; and y;;

has a standard normal distribution. Then the joint density function for {z;;}72; U {y:;}72,
is given by

1 R
2 2
enm P | 72 221 Tij + Vi
=
This is radially symmetric in the C™-vector % (i1 +1Yi1, - - - Tim +1Yim ), and hence the dis-
tribution of v; is invariant under any unitary change of basis. This implies that, ifvy,...,v;_1
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are given, then ¢;1,...,%; ;—1 are conditionally independent with the same distribution as the
entries of Y,,, and ¢;; is conditionally independent from t;1,...,¢; ;—1 with the same distri-
bution as ||(2s; + 1Y, - - -, Tim + i¥Yim)||. The former distribution is given by %(w +iy) with
x and y independent standard normal. As ||(z4 + i, - - -, Tim + ivim)||? = % Z;n:l :z:fj + yfj,

2t2. has the x2-distribution with 2(m — i + 1) degrees of freedom, so the latter distribu-
tlons are given by the densities C;t2" %"*te ~t%i for constants C;. As these distributions
do not depend on vi,...,v;—1, we in fact obtain that {t;;};>; are unconditionally inde-
pendent with these distributions. Hence, if we parameterize T,, by {u;}, = {tu}lq,
{uij}i>; = V2Re{tij}i>;, and {vi;}i>; = V2Im{t;;};>;, then the joint density of these
parameters is given by

n

n
C ufzm 2z+1 He 5 u +v :C u122m 2i+1 7trTnT
i=1

i=1 i>]
for a constant C > 0.

Let us parameterize H,, by a;; and 3;; as in Definition 3.1. Then the map T,, — M,, = T,,T}
is given by

1
Qi = 52( T o)+ ul

k<i

for it =1 to n and

1 1 1

7Oél+i ii) — < (7 +ivl U5 7iU' +7uii’ui*i’l}'i,

\/5( J ﬂj) 9 k§<l( k k)( ik Jk) \/i ( J J )
or equivalently,

§ uzku]k + Uzkv]k) + Ui Usjss
k<i

Olij

\f
1
Bij = 7 Z(ujkvik — UikUjk) — UiiVj5

k<i
for ¢ < j. If we order the parameters for T, in the order w1, w21, V21, U31, V31, - -+, Unl, Unl,
U992, U32, V32, - - - , U, and the parameters for M, in the order aii,a12,S12, 13,013, -- -,
Q1n, Bin, @22, 23, 23, . . ., Qpn, then the Jacobian of this map is the dete%minant of an upper-
triangular matrix with diagonal entries 63“ = 2uy, 83” = Ui, Bf JZ = —u;;. Hence
the Jacobian has absolute value 2" [T}, u2” L As ]_[7 L wi; = det T, = (det M,,)'/2, the
distribution of M, is given by C(det H,,)™~ _“ HrdH,, for a constant C, over the range
of the map T,, — M, i.e. the positive definite matrices H,,. O

This gives the following result as an immediate corollary of Proposition 3.4; the analogous
result for real matrices was first obtained independently in [11], [13], [15], and [22]:

Theorem 3.7. Let M, be the n x n matriz of the Wishart Ensemble with parameter p, with
eigenvalues \1 > ... > A, > 0. Then the joint distribution of these eigenvalues is given by
the density function

PO ) = C ooy sazo [ = )2 TP e,

1<i<j<n i=1

where

C= / = A2 T AP e ian,
Mz >)‘n>01<g<n ’ 11;[1 '
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4 Convergence of the Local Eigenvalue Correlation Func-
tion

The formulas for the joint density of eigenvalues from the previous section allow us to study
the local statistics of eigenvalues in the GUE and Wishart Ensemble. We note that the
density functions are not symmetric because they assume that the inputs are ordered, and
we may symmetrize as follows:

Definition 4.1. Suppose that an n x n random matriz has joint density of (ordered) eigen-
values given by p(x1,...,xn) = Ly> >z, f(21,....2,) for a symmetric function f. Its
joint density of unordered eigenvalues is p(x1,...,2Z,) = %f(xl, cey X))

This joint density of unordered eigenvalues satisfies the properties that, for any function f

and permutation o of {1,...,n}, we have

flz1, ... zn)plxr, ..., 2n)dey ... dey = flo(x1),...,o(xn))p(z1, ..., zp)day .. day,
RTI,

(8)

R

and for any symmetric function f,

flr, .. zn)p(z, .. xy)dey .. dey, = / flze, .. xn)p(ar, ..., xpn)dey ... dey,.
Rn T12>...2Ty

(9)
The focus of our study of local eigenvalue statistics of the GUE and Wishart Ensemble will
be the following k-point eigenvalue correlation functions, introduced by Dyson in [6] and
[7):
Definition 4.2. The k-point eigenvalue correlation function of an n xn random matriz X,

for1<k<n,is

n!
Rian, o) = ¢

TL—]{:)'/R . p(l’l,...,fljn)dmk_;’_l...d(l?n.

We note that these are simply scaled marginal densities of k unordered eigenvalues, and
we may interpret Rg(z1,...,2) as an “expectation density” of finding eigenvalues close to
T1,...,T in the following sense:

Proposition 4.3. Given sets Aq,...,Ar C R, / .. / Ry (z1,...,xk)dxy ... dxy is the
A1 Ag

expected number of ordered k-tuples of distinct eigenvalues (Aiy,...,Ni,) of X such that
Ai; € Aj for each j from 1 to k.

Proof. The proof is straightforward from equations (8) and (9). Indeed,

/ / Rk(.rl,...,.’l,‘k)dl‘l...dl‘k
A1 Ak

:/k 1a,(z1) ... La, (xx)Re(x1,. .., 2) dzy . . . dxg
R‘,

n!
= (n—k)'/ 1a,(z1) ... La, (xp)p(z1,. .. 20) doy ... day,
:/ Z La, (o)) - La, (o)) p(21, - - 20) d2y .. day
R 0€Xk,n
:/ Z ]lAl(xg(l))...ﬂAk(xU(k))ﬁ(ml,...,xn)dxl...da:n,

12...2Tn Uezk,n

where X, ,, is the set of all ordered k-tuples of distinct indices from 1 to n, and the last
quantity is our desired expectation. O
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The formula for p(z1,...,z,) can, in the case of matrices exhibiting unitary invariance,
be expressed in terms of polynomials orthogonal with respect to certain weight functions.
This allows us to write the k-point eigenvalue correlation functions Ry in a relatively simple
determinantal form, which we will derive in Section 4.1. This will then translate the problem
of determining a limit law for Ry into one of determining the asymptotic growth for these
orthogonal polynomials, and we will use the asymptotic properties of the specific polynomials
associated to the GUE and Wishart Ensemble to derive limit laws for the bulk of the
spectrum in Section 4.2. Our presentation draws on [1], [5], [18], [20], and [24].

4.1 Properties of the k-point eigenvalue correlation functions

In this section, let us consider an n X n random matrix X with joint density of unordered
eigenvalues

p(xi,...,zy) =C H ‘xi_ijHw(xi)» (10)
1<i<j<n =1

for a weight function w : R — R>q such that [ |z*|w(z)dz < oo for all k. For polynomials p,
let us denote [ p(z)?w(z)dx as the norm-squared of p with respect to w, and for two polyno-
mials p and g, let us say that they are orthogonal with respect to w if [ p(z)g(z)w(z) dz = 0.
We will use the following notation:

Definition 4.4. Given a function K : R? — R, denote

i K(zy,21) - K(x1,28)
dot K(esz)=|  : '

,j=1

K(zg,z1) -+ K(xg,zk)

for k> 1. Denote

det(I — K)jgp =1+ Z ( ') / det1 K(z;,xj)dxy ... dxy.
P [a,b]* 2,]

The central result of this section is that we may express the k-point eigenvalue correlation
function as a determinant of a matrix of values related to orthogonal polynomials:

Proposition 4.5 (Mehta, Gaudin [19]). Suppose the joint density of unordered eigenvalues
of X is given by equation (10), and let Ry be its k-point eigenvalue correlation function.
Let {pr}32, be monic polynomials orthogonal with respect to w, with py of degree k and
norm-squared cy with respect to w. Then for each k from 1 to n,

Ri(x1,...,25) = | det K(z;,x;) (11)

,j=1

where

Z” esle

k
Proof. We show by induction that Rg(z1,...,2r) = nlC-co...cn-1 ‘d‘etl K(z;,x;) (where
W=

C' is the constant in the joint eigenvalue density of X). For the base case k = n,

R, (z1,...,2y) =nlp(x1,...,2,) = nlC H |xi—xj|2Hw(mz)
i=1

1<i<j<n

21



We note that H |z — x| = de_t J: is the van der Monde determinant, and
1<i<j<n b=
n
det x R ‘d‘etl pj—1(x;) because our polynomials p; are monic and adding a multiple
i,j=1 i,j=

of one row of a matrix to another does not change the determinant. Hence

Rp(z1,... zn) =nlCco...cp <dt\/71p] ! )

1,j=1 Cj—1

We then note that

2 n
(det f(‘rl7xj)> (det f(-rwxj)) (,d,etl f(xjwrz ) <det E f CEZ,,T]C x]ﬂxk})> )
i,j=

3,7=1 3,7=1 1,5=1

where the first equality uses det A = det AT and the second uses (det A)(det B) = det AB.
Thus

n
Ro(x1,...,xy) =nlC - co...Cno1 4d'et1K(xi,xj)
ij=

as desired. For the inductive step, suppose

1
Rk,l(ml,...,xk,l) = m/Rk(xh...,{L‘k)d{Ek

n!lC-cy...cph-1

— ﬁ/fﬁt K(z;, ;) dxy.

We may expand the determinant as

k
l(%e_tl K(xi, J?j) = Z Sgn(U)K(l‘l, 1‘0(1)) AN K(xk, xa(k)),
e UEEkyk

where Xy, 1, is the set of permutations on {1, ..., k}. For each j from 1 to k, there is a bijection
fi{o€Xpr|o(j) =k} — Zg_1,k—1 such that f;(0)(j) = o(k) and f;(0)(i) = o (i) for all
i # j. We note that sgn f;(c) = —sgno if j # k and sgn fy(0) = sgno. As

/K(x,y)K(y,z)dy:/ w(z)w(z)w(y) ipij(xi?j(y) ipij(yZ]?j(Z) dy

Z pu(z)p;(2) / pi(y)p; ()w(y)dy

cic;
i,j=0 v

- K(:c,z),

where the last equality uses that [ p;(y)p;(y)w(y)dy = 0ifi # jand [ p;(y)p; (v)w(y)dy = ¢;
if ¢ = j. Thus we have for j # k,

/ Z sgn(o)K (21, T5)) - K(zj,21) ... K(Tp, (k) )dok

Il
wn
02
B
—~
=
[l

q
2

.. K(:Ej, xo(k)) e K(iL’k,h l'a(k—l))

= — Z sgn(o)K(r1,2501)) - - - K(Th—1, To(r—1))
0EXK 1,61

- det K(z, ;).
i,j=1
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On the other hand, as

/ Z sgn xl, xa(l)) ce K(xk_l, xg(k,l)) ce K(xk, xk)dmk

=n Z sgn(o) K (x1,2501)) - - K(Tp—1, Zo(—1))

Summing over j from 1 to k gives

k-1
Ry_1(w1,...,21-1) =nlC - co...cn1 Z%,e:‘ﬁl K(z;,x;)

as desired, completing the induction. In particular,

1
1:/ p(xl,...,xn)dazl...dxn:E/Rl(xl)dxl

Tl!C'Co...C —1
= —— " | K(z1,21)dry =n!C -co...cn 1,
n

giving the desired result. O

Proposition 4.5 will allow us to obtain a limit theorem for the k-point eigenvalue correlation
functions of the GUE and Wishart Ensemble as n — oo. Before doing so, though, let us
comment that the k-point eigenvalue correlation functions of X allow us to compute various
other local statistics of the eigenvalue distribution of X. As an example, we may obtain a
formula for the probability of finding exactly m eigenvalues in a closed interval:

Proposition 4.6. Suppose the joint density of unordered eigenvalues of X is given by
equation (10). Suppose {pi}7, are monic polynomials orthogonal with respect to w, with
pr of degree k and norm-squared ci with respect to w. For m > 0, let S,,([a,b]) be the
probability that X has exactly m eigenvalues in [a,b]. Then

S b)) = ! 4\" det(I —yK
m([av ]) - m _% et( -7 )[a,b] .
where
Z ; el
Proof. Let us denote ¥, ,, as the collection of (unordered) subsets of {1,...,n} of size m.

We may use (8) and (9) to obtain

Sm([a,b]):/ Z H]]-ab Z; H 1—]l[a7b](;vi)) o1, ..., xn)dey ... dey,

12280 ces,, , i€o ido
/ Z H]l[a b] .231 H 1 — ]l[a’b](xi)) p(xl,...,acn)dxl d.l?n
" o€x,, | i€0 ito
= < ) / H Tiq,5)(2k) H (1 — Loy (mk)) p(x1, ..., xp)dxy ... dzy,.
R™ k=1 k=m+1
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We note that

n

d m
- %/]R H ]]-[a,b](xk) H (1 _Vl[a,b](xk)) p(xlwnaxn)dxl dxn

k=m+1
/ Z ]l[a b] xk H]l[a b] l‘j H (1—’)/]1[,1’17](&3]*)) p(ml,...,xn)dxl...dxn
R™ k=m+1 j=m+1
J#k
m—+1 n
(n—m / H Tia,p) (k) H (1—’}/]1[&1,](3319)) p(x1,. . xn)dey ... da,.
" k=m+2

Hence

Sm([a,b]) = % <677) [/}Rn kli[l (1 =L (xr)) p(z1,. .. 2n)day .. day,

We then have that

y=1

/ H — Y13 :z:k)) p(x1, ..., xn)dxy ... dey,

= /n 1+ Z(—fy)k Z H Liap)(zi) | p(21,- s 20)dwy . dy
k=1

oeX], n €0

:1+ ()/ H]lab $Z $1,...,£n)d$1...d$n
n oAk
:1+Z( ];I) /[ab]kR($17~--,$}g)d$1...dxk

:1—|—§n: (=" / d]ét K(zi,xj)dx ... day
[a,b]k BI=1

by Proposition 4.5. We note that

ne1 Vw(x1)p;(z1)

1

(K<$i7$j))ﬁj:1 = Z . : (\/w(Il)Pj(Il) \/w(xk)pj(xk)>7

=0\ Vwlen)py (xe)

which has rank at most n. Hence detﬁj:1 K(zi,z;) =0 for all k > n, so

Sullat) = g (~3 ) et =2Kn|

O

4.2 Limiting behavior of the correlation function in the bulk of the

spectrum

Proposition 4.5 expresses the k-point eigenvalue correlation functions of fixed random ma-
trices X in terms of polynomials orthogonal with respect to corresponding weight functions.
By using certain Plancherel-Rotach asymptotics concerning the polynomials corresponding
to the GUE and Wishart Ensemble, we may obtain asymptotics for their k-point eigenvalue

correlation functions. Specifically, we will prove the following two results:
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Theorem 4.7. Let {W, }nen be the GUE, and let ng") (X1, ...,2k) be the k-point eigenvalue
correlation function of the scaled matrix ﬁWn for each n. Then for any ¢ € (—2,2) and

any distinct values &1, ...,& € R,

. 1 (n) &1 &k
lim —— = d t K(&;,
im ( ))kRk <C+na(c)’ ’C+na(c) et K(&,€5),

n—oo (No(c i,j=1

where o is the semicircle density from Theorem 2.14 and

sinm(& —n)
K n)=—r————.
="
Theorem 4.8. Let {M,},en be the Wishart Ensemble with parameter p = 1, and let
Réﬂ)(mh ..., xk) be the k-point eigenvalue correlation function of the scaled matriz =M, for
each n. Then for any c € (0,4) and any distinct values &1, ..., & € R,
lim —— R (c+£1,...,c+ 5’@) = det K (&,
n—oc (npyp(c))k* e (©) npmn(0) ) S (& &)

where wyp is the Marcenko-Pastur density from Theorem 2.17 and

sinm(€& —n)
m(&—mn)

Intuitively, these results state that if we pick a point ¢ in the interior of the support of the
spectrum for the scaled GUE or Wishart Ensemble and then rescale the matrices so that
the eigenvalue density is 1 at ¢, then the local k-point correlation functions around ¢ have
a pointwise limit. The method of proof for these results was introduced by Dyson, who
established the ¢ = 0 case of Theorem 4.7 in [6].

K(&n) =

To prove these limit results, we will need to compute the asymptotics of the kernel function

ZV Zesle

from Proposition 4.5. As a first step, let us express this function in closed form.

Lemma 4.9. Suppose {pi}72, are monic polynomials orthogonal with respect to a weight
function w, with py of degree k and norm-squared c with respect to w. Then for x # vy,

"f Pi(@)pi(y) _ Pn(@)Pn-1(y) = Pr—1(y)pa(z)

en-1(z = y)

Proof. Let ¢;(z) = V%pj(a:) for all j. We note that for any 7, {¢;}?_4 forms a basis for the

space of polynomials of degree at most j — 1, so g; is orthogonal, with respect to w, to any
polynomial of degree at most j — 1. For j > 2, ¢;(z) — /%
J

degree j — 1 (because p; is monic), and hence it is a linear combination of {q,;}g;é . We note

that
/(qj(x)_FxQJ 1 >%
- [ 6@t dm—r/xqﬂ 2)gs (@) (w)da

=0

—1(z) is a polynomial of
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Cj—1

for all ¢ < j—2. Hence g;(z) — zqj—1(x) = Cjqj—1(x)+ D;qj—2(x) for some constants

<
C; and D;. Multiplying by ¢;—2(z)w(z) and integrating, this gives

2

Ci_ 2
Dj=—,/~ _1 /Qj—l(ﬁ)(qu‘—z(f))w(fﬂ)dx =t —,
¢ CjCj—2

Cj—1
Cj—2

as rqj_o(z) = gj—1(x)+.... So for all j > 2 and some constants C},

2
_ Gi-1 ] G
(@) = (/e 6 ) a5 a00)

Then

q;(2)qj-1(y) — qj-1()q;(y)

Il
N
uﬁ
u@ |
-
8
_|_
S
~_
R
|
—
—
N
I
<
O ‘M
|
N}
&
|
)
—
8
N
| |
R
|
-
—
<
N—

SO

¢ ¢i(2)gi-1(y)—gi-1()q;(y) o ) cj—1qj—1(2)q—2(y) —q;—2(7)q; ()
\/Cj_l pr— —qul(:c)qul(y)ﬂ/cj_z pr—y :

Summing over j from 2 to n gives

Cn (@) an-1(¥) — @1 (@)an(y) = 1 q1(2)g0(y) — go(2)q1(y)
= - Lot + /o ) - d2)nl),

r—Yy — 0

As qi(z) = \%x =/ 2aqo(x), we have

\/qu (x)qO(y) — qo(x)fh (y) = qg(x)QO(y),

r—y

and substituting ¢;(z) = —=p,(x) gives the desired result. 0O
j Nl

4.2.1 Hermite polynomials and the GUE

The orthogonal polynomials corresponding to the eigenvalue density functions of the scaled

GUE are based on the classical Hermite polynomials, which are orthogonal with respect to
2

the weight w(z) = e *":

Definition 4.10. The Hermite polynomial of degree n is hy(x) = €® (—1)" 4o e=2

dx™

Lemma 4.11. The degree n Hermite polynomial h,, has leading coefficient 2™, and

/ B (2) o ()€™ dz = /72" Gy

— 00
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Proof. From the definition of h,,,

22 n— d dr—t a2 22 d a2
hy(z) = —e* (=1) 1% |:dxn—16 ] =—e @[hnfl(ﬁ)e | = 2ahn 1 (x) = hy,_y(2).

As hg = 1, h,, has leading coefficient 2™ by induction. Supposing without loss of generality
that m > n,

/OO B () (2)e~ %" d = (—1)™ /Oo hn(:c)c% (e*mz) dz = /j}o A () e da,

m
o oo oo Az

where the first equality follows from the definition of h,, and the second from integration
by parts m times. If m > n, then this is 0, while if m = n, then d;Tnhn(z) = 2"n! and so
this gives y/m2"nl. O

To establish the limit law in Theorem 4.7, we will assume the following Plancherel-Rotach
asymptotic of the Hermite polynomials h,,, whose proof may be found in [24]:

Proposition 4.12. Let ¢ € [e,7 — €] for some € > 0, and let x,, = (2n + 1)"/% cos . Then

Tn n 1 1

€™ 3 hy(xn) = 2573 (n))2 (rn) "3 (sing) 2 [sin Kg + 4) (sin2p — 2¢p) + 3;] +0 ()} ,
n

where the error term is O(1/n) uniformly over ¢ € [e,m — €].

These tools allow us to complete the proof of the asymptotic limit of the k-point eigenvalue
correlation function for the scaled GUE.

Proof of Theorem 4.7. Rescaling the result from Theorem 3.5, the joint density of unordered
eigenvalues of ﬁWn, where W, is the n x n matrix of the GUE, is given by

p(m,...,xn Cn H|xz_5€j| He =
for some constant C,,. From Lemma 4.11, we have

1<J
/ hj <\/Zx> hy, (\/Zx> e =4/ 2%2jj!5jk7

and h; (/%) has leading coefficient (2n)7 /2. Thus the monic polynomials orthogonal with

nm2 .
respect to weight e™ "2~ are given by p;(z) = (2n)’3/2h]— (\/gx), and p; has norm-squared
oo
/ pi(x)%e " Pdy = nI~ 32w,
—00

Hence, by Lemma 4.9, the kernel function of Proposition 4.5 is given for x # y by

e T @3 (p (2)pp—1(y) — Puo1(2)pa(y))
V2r(n —D)l(z —y)
e~ 1) [y, (/Fa) hr (V) = bt (VE2) b (VEY)]
27 /x(n — 1)!(x — y) '

where ¢ € (—2,2). Then for all sufficiently large

Kn(l’,y) =

Let us set x = c+ and y = c+

no (c) "47( )’
n, we may set 0, 1,0, 2, 9n 1, 0n,2 € (0,7) such that

cosbp 1 = , cosb, o=
2n—|—1 2n—1
COSSDnl ” 2n+1y7 COSSDn2—” n—l
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so that 6,,.1,0 2, Pn1, Pn2 — cos™1 (%) as n — oo. Then, using Proposition 4.12, this gives

Kn(z,y) =

[NIE

no(c) (sin [(§+1) (510 20,1 —20n,1)+ 2] sin [(§—F) (sin 2n 2= 20 2) + 5]
77(5_77) (bln 0n 1 sin ©n, 2)
sin [(%f %) (sin26, 2—20, 2)+ ] sin [(2 +i)( 2g0n71—2<pn71)+%”] +O(711)>~

(sinf, 2 sin pp 1)

Nl=

We may compute the Taylor expansions of sin20 = 2sinfcosf = 2v/1 — cos? 6 cosf and
6 = cos~!(cos ) in terms of % for 8 = 0,,.1,05.2,¥n,1, ¢n,2 to obtain the following asymptotic
identities:

1

(’5 i) (sin 26,1 — =n (2 —¢2 —cos! (g)) + 7€ — 3 cos™! (%) + 0 (%)
1

(2 — 1) (sin26, o — :n(g 4—c2—cos! (g)) +7r§+§cos_1 (g) +0 (%)
1

(2 + 1) (sin2pn,1 — 2¢0p1) =n (2 —¢2 —cos? (g)) + 7 — §COS_1 (g) +0 (%)
1

(3 —14) (sin2pn2 = 2002) =1 (TVA— P —cos™! (5) ) +mm+ 500571 (5) +0(3)

Using the trigonometric identity

sin(A — C) sin(B + C) —sin(A 4 C) sin(B — C) = sin(A — B) sin(2C)

with
_ VA2 eos1 (& 3
A ( 4 —c¢? —cos (2))+7r§—|—4,
3m
— — 2
B—n( V4 —c?—cos” (2)>+7r77+ 1
1 o1 c
C=zeos (3).
this gives
K, (C+ § ey > _ no(e) sinﬂ(ff n)sin (cos™* (£)) +o(1) ],
no(c) no(c) m(€—n) sin (cos™! (%))
and hence ) ¢ (€ )
n sinm(§ —n
no(0) (” no(e) ¢ na(c)) T Tae-n)
Together with Proposition 4.5, this establishes the desired result. O

4.2.2 Laguerre polynomials and the Wishart Ensemble for p =1

We may carry out the same argument for the Wishart Ensemble with parameter p = 1.
The orthogonal polynomials corresponding to the eigenvalue density function of the scaled
Wishart Ensemble for p = 1 are based on the classical Laguerre polynomials, which are
orthogonal with respect to the weight w(z) = e 1,>0:

Definition 4.13. The Laguerre polynomial of degree n is I, (x) = Le” -4 (e~7z™).

n! dx™

Lemma 4.14. The degree n Laguerre polynomial l,, has leading coefficient (_nl!)n , and

/ ln(@) i (x)e™de = dpp.-
0
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Proof. The highest order term of ,,(z) is the 2" term with coefficient %ezd‘% (e7®) = (773!)71 .
Supposing without loss of generality that m > n,

h oy — L - xd—me_zacm mz(_l)m OOd—m z))e “xMdx
| @eeie = o [ 1@ ey a | i Gt emamas,

m! m/!

where the first equality follows from the definition of [, and the second from integration
k

by parts m times (and we note that dd?(e_"”mm) =0at z =0 and z — oo for all kK < m).

If m > n, then this is 0, while if m = n, then %ln(x) = (—1)™ and so this gives 1 as the

integral of the density for the Gamma distribution. O

Analogous to the GUE case, we will assume the following Plancherel-Rotach asymptotic for
the Laguerre polynomials [,,, whose proof may be found in [24]:

T —en~2] for some e > 0, and let x,, = (4n + 2) cos® py,.

[sin Kn%—;) (sin 2<Pn—290n)+3;r:| +0 ((n:clnﬁ)}

where the error term O ( 1 )1) holds uniformly for v, € [, 5 — En—%].

NTy)?2

Proposition 4.15. Let ¢, € [e
Then

Zn

e 2 l(zy) = (—1)"(msing,)”

N
Bl

(znn)~

Using this, we may derive the asymptotic limit of the k-point eigenvalue correlation function
for the scaled Wishart Ensemble.

Proof of Theorem 4.8. Rescaling the result from Theorem 3.7, the joint density of unordered
eigenvalues of %Mn, where M, is the n x n matrix of the Wishart Ensemble with parameter
p =1, is given by

n

2 —nx;

,0(1'1,~»,$n):CnH|xi_xj| He ]]-mZO
i<j i=1

for some constant C,,. From Lemma 4.14, we have

o 1
/ li(nx)lk(nx)e™ " de = =4,
0 n

and lj(nx) has leading coefficient (7f)j. Thus the monic polynomials orthogonal with
J-

respect to weight e "1, are given by p;(z) = (—n)7jll;(nz), and p; has norm-squared

| mape s =i,
0
Hence, by Lemma 4.9, the kernel function of Proposition 4.5 is given for = # y by

e 25 0,>0n*" 7 (pn (2)Pn—1(Y) — Prn-1(2)pn(y))

K =
(3) (= D2 —y)
e B0 50 [l 1 (n2)l (ny) — L (na)ly 1 (ny)]
r—=y

Let us set z = ¢ + yand y = ¢+ —1_~_ where ¢ € (0,4). Then for all sufficiently

£
npmp(c npmp(c)’
large n, we may set 0y,.1,0n,2, Yn.1,9n2 € (0, §) such that
n
‘/'C7
4n — 2
n

4n — 2

cos® On1 = cos® On2 =

n
— =
dn+277

2 — 2 —
COS Pn,1 = COS™ Yp .2 = Y,

n
in+ 27
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C

so that 0,,1,0n,2, Pn,1,Pn2 — cos™! (7> as n — o0o. Then, using Proposition 4.15, this
gives

)(sin2¢p 2 — 20, 2) + 27 |

M‘H

Ko (2.y)= npap(c)
)= e ey
Sln[( %

(Sin [(n—i— ; )(sm 20,,1—20, 1)+ ] sin [(n
)% (sin 0y, 1 sin p,, 2)
) (sin 26, 5 —20,, 2) + 2 |sin[(n+ 3 ) (sin 20,1 —20n.1) + 27 |

(sin By, 2 sin gon,l)%

W=

+0 (;)).

Using the Taylor expansions of sin20 = 2sinfcosf = 2/(1 —cos20)(cos2d) and 0 =
cos™! (\/ cos? 9) in terms of % for § =0,,1,60n.2, 9,1, Pn,2, We obtain:

( d4—-@——4dﬁ_1<

1

(n + %) (sin20,1 —20,1) =

—4cos™

()
=5 (Ve (7)) (%)
(ﬁ st () v (1) 0.2
= (vA (7)) ()

(n—3) (sin26,, —

(n + %) (sin2¢p1 — 2¢n.1)

ve(d—c) — 4cos™!

(n — %) (8in 2,2 — 2¢p 2)

M\S 1\9\3 1\3\3 l\'>\3

Using the trigonometric identity

sin(A — C)sin(B + C) — sin(A4 4 C)sin(B — C) = sin(A — B) sin(2C)

with
n Ve 3
—(Ve(d=c)—4 yvo
2( c) cos™ (2>>+7r§+4
_n o dcos [ VC 37
B_Q( (4 —c¢)—4cos (2>)+7r77+ T
C = cos™? (\ﬁ>,
2
this gives

3 n (c) sinm(€ —n) sin (2 cos—1 (%))
K, (C—i— nMMP(C)’C+ n,Ul\/?P(C)> - (MMP)\/E sin (cosﬂ (§)) +o(1) ],

and hence

1 . 13 . n _ sinm(€—n)
nuMp@)K"( T (@) MMMp(c)) TE—n)

Together with Proposition 4.5, this establishes the desired result. O

Some concluding remarks are in order regarding generalizations of these results. It is not a
coincidence that the limit forms of the kernel functions in Theorems 4.7 and 4.8 are iden-
tical. Asymptotics of the Plancherel-Rotach type, such as in Propositions 4.12 and 4.15,
can be derived in greater generality for polynomials orthogonal to a general weight function
w(x), and these asymptotics can be used to prove the convergence of the kernel function to
the sine kernel given in Theorem 4.7 for general classes of matrices corresponding to these
orthogonal polynomials. We refer the reader to [5] for this approach. We assumed in The-
orem 4.8 a parameter value of p = 1 so that the corresponding orthogonal polynomials are
rescaled Laguerre polynomials. The same result is true for p > 1 (]9, 26]), but there is no
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classical result for the asymptotics of the corresponding polynomials (which are generalized

Laguerre polynomials l%a)

for parameter « increasing with n).

As Theorems 4.7 and 4.8 describe the k-point eigenvalue correlation function around a
point ¢ in the interior of the support of the limiting spectrum, these results are referred to
as convergence results for the “bulk” of the spectrum. The same method of proof yields a
limit theorem for the “edge” of the spectrum, where c¢ is on the boundary of the support
of the limiting spectrum, using the corresponding Plancherel-Rotach asymptotics in [24].
The limiting kernel function for the edge of the spectrum is different from the sine kernel in
Theorems 4.7 and 4.8, and is instead given by K (z,y) = 212) Ai/(yl:j;i/(x) AW where Ai(z)
is the Airy function. We refer the reader to [1] and [5] for details.

Finally, the approach of orthogonal polynomials developed in this section depends on the
ability to factor the joint eigenvalue densities from Theorems 3.5 and 3.7 as a product of
weight functions of the eigenvalues, which relies on the property of invariance under unitary
conjugation for the matrix ensembles, a consequence of the normal distribution of the matrix
entries. That Theorems 4.7 and 4.8 hold for matrices with more general distributions of
matrix entries was a long-standing conjecture, and results in this direction were proven
recently in [8], [9], [10], [25], and [26].
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