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Chapter 1

Introduction

This paper aims to provide an exposition of the étale fundamental group, which
provides a notion of fundamental group for objects called locally Noetherian schemes.

Because we formulate the construction of both schemes and the étale fundamental
group in Category-Theoretic language, we begin with an overview of the relevant
language and concepts in Category Theory.

Because the étale fundamental group is an analogue of the classical fundamental
group de�ned over a path-connected, semilocally simply connected topological space,
we then give a brief review of the construction and properties of the topological fun-
damental group as a group of homotopy classes of paths. With the notions provided
by our Category-Theoretic overview, we are able to give a reformulation of the topo-
logical fundamental group suitable for generalization to the context of schemes. This
reformulation emphasizes the role of automorphisms of covering spaces. Speci�cally,
it emphasizes the role of automorphisms of the �ber functor, the functor associating
to each �nite covering the preimage of a particular point in the base space.

Theorem 2.2.2: Fix a path-connected, semilocally path-connected, and semilo-
cally simply connected topological space X. The automorphism group Aut(FfinX,x)
of natural transformations from the �nite �ber functor to itself is isomorphic to{πtop1 pX, xq, the pro�nite completion of the topological fundamental group of X at
the point x.

These automorphisms of covering spaces are analogous to �eld automorphisms
over a base �eld, the subject of Galois Theory. We therefore provide a brief discus-
sion of Galois Theory, culminating in the construction of the absolute Galois group,
the natural analogue of the topological fundamental group, and more precisely, the
topological fundamental group under a modi�cation called pro�nite completion, which
we will discuss in the section on Category Theory.

Theorem 2.3.8: The Absolute Galois Group Gal(Ω{F) of F is isomorphic to
limÐÝGalp

L{Fq, the inverse limit of the Galois groups for all Galois extensions L � F.
As our object is to de�ne a fundamental group for schemes, we devote the begin-

ning of Chapter 3 to de�ning schemes and their structure sheaves (Theorem 3.2.1).
We establish useful properties for later discussions, including the property of quasi-
compactness, a compactness notion for non-Hausdor� spaces (Lemma 3.2.2) and the
unique extension of a sheaf from basic open sets to general open sets (Lemma 3.2.3).
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4 CHAPTER 1. INTRODUCTION

We then establish a few useful tools for establishing an arbitrary scheme as a�ne.
As many of the properties of étale coverings, the objects of interest to the étale
fundamental group, must be established on an a�ne open cover of the source or
target scheme, having tools to generalize properties of a�ne schemes are valuable to
the discussion, and identifying arbitrary schemes as a�ne is a necessary �rst step.
The properties of the category of a�ne schemes include closure under disjoint union
(Lemma 3.2.4) and �nite �ber product (Lemma 3.3.5), and the following results
provide several useful properties for later proofs:

Theorem 3.3.2 (Hartshorne Exercise 2.16): Given a quasi-compact scheme pX,OXq
with a global section f and some a�ne cover tUαu such that the pairwise intersection
Uα
�
Uα1 is quasicompact, the set Xf of points x in X such that the restriction of

f to the stalk OX,x of x is not contained within the maximal ideal mx is an open
subscheme of X, and the rings OXpXf q and OXpXqr

1
f
s are ismorphic.

We then de�ne morphisms of schemes, and develop the ability to determine when
certain schemes are isomorphic.

Theorem 3.3.1 (Hartshorne Exercise 2.4): For X, SpecpAq schemes with SpecpAq
a�ne, the mapping α : HomSchpX,SpecpAqq Ñ HomRingpA,OXpXqq associating to
every morphism of schemes f : X Ñ SpecpAq the induced homomorphism of rings
ϕf : AÑ OXpXq is bijective.

Corollary 3.3.4: Let f : X Ñ Y be a morphism of schemes. Then if there
exists an open cover tUαu of Y such that the induced homomorphism of rings ϕα :
OY pUαq Ñ OXpf

�1pUαqq is an isomorphism for all α, then f is an isomorphism of
schemes.

We then restrict our discussion to morphisms which exhibit certain properties,
those of being a�ne, �nite, and étale, as morphisms which exhibit all three of these
properties form an analogue of covering in Topology and extension in Galois Theory,
and automorphisms of these coverings are used to construct the étale fundamental
group. To make these properties easier to work with, we use the last few results above
to generalize their properties from speci�c a�ne subsets to general a�ne subsets.

Lemma 3.3.6: Given an a�ne morphism of schemes f : X Ñ Y and an open
a�ne subset U � Y , the restriction f |f�1pUq of f to f�1pUq is also a�ne.

Theorem 3.3.7: A morphism of schemes f : X Ñ Y is a�ne if and only if for
every open a�ne U in Y , its preimage f�1pUq is open a�ne in X.

Theorem 3.3.9: For f : X Ñ Y a morphism of locally Noetherian a�ne schemes
such that X � SpecpAq and Y � SpecpBq and f has the property that the induced

map of rings pf : B Ñ A takes the form B Ñ Brxs{  h ¡, for h a monic polynomial
such that h1 is invertible in Brxs{  h ¡, then the restriction of f to any distinguished
open subset Ua Ñ fpUaq has this property as well.

From here, we introduce the natural analogue of �nite covering spaces for schemes,
étale coverings, and discuss the relevant properties of étale coverings over a �xed space
as a category (Theorem 4.1.5), as well as useful properties of objects and morphisms
within that category.

Lemma 4.1.7: If pX
f
Ñ Sq is a connected object of Et{S, then any element u

of HomEt{SpX,Xq (the set of morphisms of objects in Et{S from X to itself) is an
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automorphism of X over S.

Lemma 4.1.8: Let pX, xq, pY, yq be a pair of pointed objects in Et{S with X
connected. Then if there exists a morphism of pointed objects u : pX, xq Ñ pY, yq, it
is unique.

This discussion allows us to designate particular objects of this category as Galois
objects, the natural analogue of Galois �eld extensions in Galois Theory. We note
some interesting and useful properties of these objects, and de�ne a �ber functor for
this category analogous to the topological case.

Lemma 4.1.10: An object pX
f
Ñ Sq of Et{S is Galois if and only if the �ber

product X �
S
X is isomorphic to the disjoint union of a set of copies of X.

Lemma 4.1.11: For pX
fXÑ Sq, pY

fYÑ Sq, and pZ
fZÑ Sq connected objects of Et{S,

with Y Galois, then for any two morphisms of objects g1, g2 : X Ñ Y , there exists
a unique element ϕ of AutpY{Sq such that g2 � ϕ � g1, and for any two morphisms
of objects h1, h2 : Y Ñ Z, there exists a unique element ς of AutpY{Sq such that
h2 � h1 � ς.

We then use these to show that every object is surjected over by the union of
�nitely many Galois objects and that, in particular, every connected object is sur-
jected over by a unique Galois object, called a Galois closure, whose automorphisms
completely determine the automorphisms of the objects it surjects over.

Theorem 4.1.12: Any connected object pZ
fZÑ Sq in Et{S has a Galois closure

pX
fXÑ Sq, unique up to isomorphism.

We then de�ne the natural analogue of the fundamental group for schemes, the
étale fundamental group, as the group of automorphisms of the �ber functor over a
point in the base scheme. Our discussion of Galois objects allows us to construct the
étale fundamental group out of the automorphism groups of Galois objects.

Theorem 4.2.1: Let tPiu be a collection of Galois objects of Et{S such that for all
connected objects X in Et{S, there exists some epimorphism Pi Ñ X for some i (in
which case, we say Pi trivializes X and tPiu is a co�nal system of Galois objects).
Then for any s in S, π1pS, sq � limÐÝ

i

AutpPi{Sq.

This construction allows us to demonstrate some useful properties of the étale
fundamental group and its action on étale coverings.

Lemma 4.2.3: An object X
fXÑ S of Et{S is connected if and only if π1pS, sq acts

on FEt{S,spXq transitively.

Lemma 4.2.4: For a connected, nonempty object X
fXÑ S of Et{S and N Cπ1pS, sq

the kernel of the action of π1pS, sq on FEt{S,spXq, X is Galois if an only if π1pS, sq{N acts
freely and transitively on X.

Lemma 4.2.6: For X
fXÑ S and Y

fYÑ S objects of Et{S, morphisms of objects
X Ñ Y bijectively correspond to morphisms of π1pS, sq�sets between FEt{S,spXq Ñ
FEt{S,spY q.

We then compute an example; this example is the scheme associated to a �eld, in
which case, the étale fundamental group is exactly the absolute Galois group of the
�eld. We develop a few tools to help with the construction (Lemmata 4.3.1, 4.3.2,
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and 4.3.3), and conclude with the following theorem:
Theorem 4.3.4: For K a �eld and k a geometric point of SpecpKq, π1pSpecpKq, kq

is isomorphic to the absolute Galois group of K.
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1.2 Author's Note

The author is aware that several more concise and rigorous treatments of this subject
are widely available to potential students. It is the author's belief, however, that
conciseness is often bought at the price of exposition, and terse treatments, however
rigorous, are not always useful to new students as learning tools. As this work is
intended not only as a demonstration of the author's knowledge but also as a teaching
tool, e�ort has been made to make the subject accessible to students without a
thorough grounding in the background �elds and to those who have not dealt with
this material for some time. The author apologizes if the tone seems redundant
or pedantic to the experienced reader, and readers are encouraged to devote their
attention to whatever sections they feel are the best use of their time. E�ort has
been made to keep the tone conversational and explanatory, and while this choice is
made at the cost of brevity, it is the author's hope that the �nished work is the richer
(and the more useful) for it.



Chapter 2

Background

2.1 A Brief Mention of Category Theory

"It is characteristic of the epistemological tradition to present us with partial scenarios
and then to demand whole or categorical answers as it were."

-Avrum Stroll

2.1.1 Terminology

Category Theory concerns itself with Categories ;

De�nition 1. A category C consists of a collection Ob(C) of objects of C, equipped
with a collection of morphisms Hom(C) between these objects. For f an element of
Hom(C), f : S Ñ T , we say that f is a morphism from S to T , and that S is the
source and T the target of f . We can specify these by saying f is an element of
Hom(S, T ).

We also require that there exist an associative composition function of morphisms,
including an identity morphism. This is to say, we require that for all R, S, and T in
Ob(C), there must exist a composition function Hom(R, S)�Hom(S, T )ÑHom(R, T ),
such that (f, g)ÞÑ g � f , with (h � g)�f � h�(g � f). We also require that for each
object S, there exists a unique morphism 1S in Hom(S, S) such that for each f in
Hom(R, S) and each g P Hom(S, T ), 1S � f � f and g � 1S � g. This 1S is called the
identity morphism on S.

2.1.2 Relevant Concepts

A functor F is a mapping of categories which preserves certain structural qualities
between the categories.

De�nition 2. Given categories C and D, a functor F: C Ñ D is a mapping
which associates to each element S of Ob(C) an element of Ob(D), denoted FpSq
in Ob(Dq, and to each element f of Hom(S, T )� Hom(C) an element, denoted Fpfq,
of Hom(FpSq,FpT q)� Hom(D).
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8 CHAPTER 2. BACKGROUND

We require of functors two further things: The �rst is that Fp1Sq � 1FpSq for all
objects S. The second is that either Fpg � fq � Fpgq � Fpfq for all morphisms f
and g, in which case F is called a covariant functor, or that Fpg � fq � Fpfq � Fpgq
for all such f and g, in which case F is called a contravariant functor. It should be
noted that, unless speci�cally described as contravariant, functors are assumed to be
covariant.

De�nition 3. A natural transformation is a morphism between covariant functors
which preserves structural qualities of the functors themselves. For F and G, functors
from category C to category D, a natural transformation ξ from F to G is a mapping
which associates to every S in Ob(C) a morphism ξS: FpSq Ñ GpSq such that for
every morphism f : S Ñ T of objects in Ob(C), ξS � Fpfq � Gpfq � ξT .

Finally, there are particular objects of a given category C which, if they exist, we
designate with special distinction.

De�nition 4. A �nal object or terminal object T in Ob(C) of a category C is an object
for which, for every object X in Ob(C), there exists a unique morphism X Ñ T .

De�nition 5. An initial object T in Ob(C) of a category C is an object for which,
for every object X in Ob(C), there exists a unique morphism I Ñ X.

De�nition 6. A morphism of objects f : R Ñ S is called a monomorphism if for
every pair of morphisms g1 and g2 with source some object Q and target R such that
the compositions f �g1, f �g2 are exactly equal, then g1 and g2 are exactly equal also.
This property is called left cancellation.

De�nition 7. A morphism of objects f : RÑ S is called an epimorphism if for every
pair of morphisms g1 and g2 with source S and target some object T such that the
compositions g1 � f , g2 � f are exactly equal, then g1 and g2 are exactly equal also.
This property is called right cancellation.

De�nition 8. An epimorphism f : R Ñ S is called e�ective if the �ber product
R �

S
R with projection maps π1, π2 onto R satis�es the following property: f � π1 is

exactly equal to f � π2, and for every morphism g : RÑ T such that g � π1 is exactly
equal to g � π2, there exists a unique morphism g1 : S Ñ T such that g1 � f is exactly
g.

De�nition 9. A section is a right inverse of a morphism. Given a morphism f : RÑ
S, a section g of f is a morphism g : S Ñ R such that f � g is the identity on S.

The �nal two relevant Category-Theoretic concepts are constructions which can
be pieced together out of the objects of a category through the equivalence classes
imposed by morphisms.

De�nition 10. The pullback or �ber product R �
T
S of two morphisms f : R Ñ T

and g : S Ñ T is an object equipped with two morphisms p1 : R �
T
S Ñ R and

p2 : R �
T
S Ñ S such that f � p1 � g � p2 and such that for any other object Q

equipped with morphisms q1 : Q Ñ R and q2 : Q Ñ S with f � q1 � g � q2, there
exists a unique morphism u : QÑ R �

T
S such that q1 � p1 � u and q2 � p2 � u.
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We note that this last property makes the �ber product universal.

De�nition 11. Let T be a functor from some category A into C, and for any object α
in A, let Tα denote the corresponding object in C. Let the collection tTαu be partially
ordered by the existence of morphisms fα,α1 : Tα Ñ Tα1 such that fα,α1 � fα1,α2 � fα,α2
and fα,α is the identity map, the inverse limit or projective limit is the object limÐÝ

α

Tα

equipped with morphisms gα : limÐÝ
α

Tα Ñ Tα such that gα � fα1,α � gα1 , and such that

every morphism h with limÐÝ
α

Tα as its target is equivalent to a set of morphisms thαu

into tTαu which commute with the morphisms fα,α1 .

Of particular importance in the context of this paper is when these objects are
quotient groups of a �xed group G.

De�nition 12. For a �xed group G, the pro�nite completion pG of G is the inverse
limit of groups limÐÝ

α

G{Nα, where Nα vary over all normal subgroups of G with �nite

index, and G{Nα ¤ G{Nα1 if Nα1 � Nα.

Finally, there is a Category-Theoretic lemma which we will make use of throughout
the course of this paper. Because it applies to any property which is stable under
composition and pullback, it is often referred to as the "property p" lemma.

Lemma 2.1.1. (Property p Lemma): For any property p ascribed to morphisms such
that p is stable under composition and pullback, if there exists a commutative diagram

Z

f ��

φ // Y

g

��

id�id
''

Y �X Yoo

��
X Y

goo

such that the morphisms f and pid� idq have property p, then φ does as well.

Proof. First, we consider the pullback of the maps pid�idq and pid, φq. By inspection,
the �ber product is isomorphic to Z, which we illustrate in the following diagrams,
where the curved arrow is not a map, but instead represents our �lling in the blank
spot with Z:

Y
id�id
// Y �X Y

((
Y

id�id
// Y �X Y

Y �X Z

pid,φq

OO

Z

φ

OO

pφ�idq
// Y �X Z

pid,φq

OO

Thus, we know pid � idq exhibits property p and as p is stable under pullback, the
map pφ� idq is also p.

Next, we examine the following pullback:

Y �X Z
π2 //

π1

��

Z

f
��

Y g
// X
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We have taken the map f to exhibit property p, and therefore we know that the
projection map π1 also exhibits this property.

Therefore, as we know p to also be stable under composition, the map π1 �pφ� idq
exhibits p. However, this map is exactly φ, and so we are done. �

2.2 The Topological Fundamental Group: The Shape
of Things to Come

2.2.1 The Topological Fundamental Group

De�nition 13. For X a topological space, a covering space over X is a topological
space Y equipped with a covering map f : Y Ñ X, a continuous map such that for all
x in X, there exists an open subset U of X containing x such that f�1pUq � U � S,
for S any set equipped with the discrete topology.

De�nition 14. Universal Covering Space: For a path-connected, semilocally path
connected, and semilocally simply-connected topological space X, a Universal Cov-
ering Space is a path-connected, simply-connected covering space rX πÝÑX equipped
with covering map π.

While covering spaces are in general not unique (in fact, the disjoint union of any
number of copies of X can be equipped with the obvious map to form a covering
space), for X path-connected, semilocally path connected, and semilocally simply

connected, there exists a unique universal covering space rX up to homeomorphism.
The proof of this very useful fact is not conceptually di�cult, but it is lengthy, and so,
for want of space, we defer the curious reader to [Munkres], wherein the construction
of the universal covering space is Theorem 82.1.

Theorem 2.2.1. [Homotopy Lifting Principle]: For Y
f
Ñ X a covering map, p:

r0, 1s Ñ X a path in X, pp0q � x, and y in the preimage f�1pxq of x, then there
exists a unique continuous path rp : r0, 1s Ñ Y such that f � rp � p and rpp0q � y, called
a lifting of p, and that for p, p1 homotopic in X, rp and rp1 are also homotopic in Y ,
such that the homotopy class of rp depends only on the homotopy class of p.

Proof. We begin by demonstrating the lifting of a path p : r0, 1s Ñ X from x to
x1 to a path rp begining at y in f�1pxq. We �rst cover X with open sets tUαu such
that the preimage of Uα in Y is homeomorphic to Sα, equipped with the discrete
topology. We now subdivide the interval r0, 1s into the union of intervals rsi, si�1s
such that the image of each interval is contained in some Uα. We set rpp0q � y, which
must be contained by exactly one set Vα � Uα � tsu, for s in S. Because the map
f : Vα Ñ Uα is a homeomorphism, we can easily lift p into Vα. Continuing in this way,
we can construct rp piecewise through �nitely many steps, as the image of p must be
compact. As for uniqueness, this follows from the fact that sn is contained in the nth

and pn� 1qth Uα involved in these steps, and as the previous step exactly determines
rppsnq, there is only one connected component of f�1pUαq in which we could place
rpprsn, sn�1sq to make rp connected.
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We now show that if two paths are homotopic and their lifts begin at the same
point, then the liftings are homotopic as well. To do this, we will actually show
something stronger, which is that homotopies themselves can be lifted. Suppose
h : r0, 1s � r0, 1s Ñ X a homotopy of paths. We �rst partition r0, 1s � r0, 1s into
(necessarily �nitely many!) compact rectangles rsi, si�1s � rtj, tj�1s such that each
rectangle is contained within some Uα. The lifting of paths tells us that t0u�r0, 1s and
r0, 1s � t0u can be lifted appropriately. To �ll in the remaining rectangles rsi, si�1s �
rtj, tj�1s, we can assume all rectangles rsk, sk�1s� rtl, tl�1s are appropriately lifted for
all k   i and all l   j. We now note that the previous rectangles uniquely determine
the lifting rhppsi, tjqq, and as there is only one connected component of f�1pUαq, with

Uα containing hppsi, tjqq, which contains rhppsi, tjqq, and it is homeomorphic to Uα,

allowing us to extend rh over rsi, si�1s � rtj, tj�1s. As r0, 1s � r0, 1s is compact, we
need only repeat this �nitely many times, and as above, the construction is unique.
Therefore, the liftings of two paths into a covering space which begin at the same point
are homotopic if and only if the original paths are homotopic. (The "if" direction
follows directly from the continuity of f). �

De�nition 15. Topological Fundamental Group The set of homotopy classes of paths
in X starting and ending at x form a group under the binary operator concatenation,
denoted πtop1 pX, xq, the Topological Fundamental Group of X at x.

The construction of this group and proof of its well-de�nition and properties can
be found in [Munkres], wherein they are the subject of section 52.

This group acts on the preimage f�1pxq � Y by having the homotopy class of p

send rpp0q to rpp1q, where rp is any lifting of p into Y , for Y
f
Ñ X any covering of X.

De�nition 16. The set f�1pxq is called the �ber over x in Y .

2.2.2 Finite Covers of Topological Spaces

For the purposes of analogy with �nite étale mappings of schemes (to be introduced
later), we restrict our discussion of covering spaces to �nite covering spaces, which is

to say, covering spaces Y
f
Ñ X such that f�1pxq is �nite for all x in X.

De�nition 17. Fiber Functor : It is useful at this point to introduce the �ber functor,
a functor from the category of topological coverings of a particular space X into Set,

the the category of sets, which associates to each covering Y
f
Ñ X the set f�1pxq, the

�ber over some �xed x in X, which we denote FX,x.

De�nition 18. From this, it is simple to construct the �nite �ber functor of covering
spaces over X, FfinX , which is the �ber functor restricted to �nite covering spaces.

Theorem 2.2.2. Fix a path-connected, semilocally path-connected, and semilocally
simply connected topological space X. The automorphism group Aut(FfinX,x) of natural

transformations from the �nite �ber functor to itself is isomorphic to {πtop1 pX, xq, the
pro�nite completion of the topological fundamental group of X at the point x.
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To clarify, Aut(FfinX,x) is the group of all sets of mappings tξY : FfinX,xpY q Ñ F
fin
X,xpY qu

where Y
f
Ñ X varies over all �nite coverings ofX, and such that the following diagram

commutes for all pointed maps Y Ñ Y 1 of �nite covering spaces over X:

F
fin
X,xpY q

��

ξY // F
fin
X,xpY q

��

F
fin
X,xpY

1q
ξY 1 // F

fin
X,xpY

1q

Before we prove this Theorem, we must introduce a few tools to help in the proof:
First, we introduce the concept of an automorphism of a covering space.

De�nition 19. An automorphism of a topological covering Y
f
Ñ X is a homeomor-

phism ϕ : Y
�ÝÑY such that f � ϕ � f .

In order to proceed, we would like to be able to apply Lemma 2.1.1, but we must
�rst demonstrate that it is applicable. The following series of lemmata will help us
to do so:

Lemma 2.2.3. Open and closed immersions are stable under composition.

Proof. Open maps, closed maps, and injective maps are, by inspection, stable under
composition. The intersection of these properties must therefore also be. �

Lemma 2.2.4. Open and closed immersions are stable under pullback.

Proof. We begin by considering the following pullback, wherein f is an open and
closed immersion:

Y

f
��

Y �Z Xp1

oo

p2

��
Z X

goo

Because f is injective, there is at most one y in the preimage of any point in Z, and
so p2 must also be injective. Because p2 is a projection, we know it to be an open
map as well. Because f is open and closed and g is continuous, we know the set
g�1pfpY qq is open and closed in X as well. This subset of X, however, is exactly the
image of p2, and as such, the open map p2 is bijective onto this subset of X. Thus,
the complement in g�1pfpY qq of the open image of the complement of a closed set in
Y �Z X (which is, by bijectivity onto g�1pfpY qq, exactly the image of the closed set)
is closed, making p2 an open and closed immersion. �

Lemma 2.2.5. For f : Y Ñ X a covering map, the map pid� idq : Y Ñ Y �X Y is
an open and closed immersion.

Proof. We begin by noting that this diagonal injection is clearly injective. Also, as
f is a local homeomorphism, for a small enough open neighborhood U around any
point y in Y , the restriction of f to that neighborhood becomes a homeomorphism,
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and so the preimage of U becomes S � U , where S is the indexing set necessitated
by the covering map, and each tsu � U is homeomorphic to U . One of these tsu � U
must be the intersection of this set with the diagonal, and as these are disjoint, we
know that that set is both the image of U under pid � idq and homeomorphic to U .
Thus, this injection is open.

Now we must show it is closed. We take some covering tUαu of evenly covered
neighborhoods of X, and select one of its disjoint copies, which we call Uα,β in Y .
We then take the preimage of one of these Uα,β under projection in Y �X Y . Because
Uα is an evenly covered neighborhood, the preimage of Uα,β is homeomorphic to
S � Uα. Because these copies are disjoint, we can remove the copy corresponding to
the intersection of the preimages of Uα,β under p1 and p2, (or, for the sake of precision,
intersecting with the complement of the closure of that copy), and have the remaining
set be yet open. We may call this open set Vα,β in Y �X Y . From here, we note that

the union
¤
α,β

Vα,β must still be open, yet contains every point in Y �X Y not along

the diagonal, and so the diagonal must be closed.
We therefore have an open, bijective map pid� idq onto an open and closed subset

of Y �X Y , which makes it necessarily an open and closed immersion. �

We note, at the end of this, that we have covered Y with these Uα,β, which are each
evenly covered, and that this argument applies for the �ber product of two di�erent
covering maps. We therefore conclude the following:

Lemma 2.2.6. The property of being a covering map is stable under pullback.

We may now, at long last, demonstrate the following lemma, which will be of
great use to us:

Lemma 2.2.7. Suppose f : X Ñ Y is a covering map, and s : Y Ñ X a section of
f . Then s is an open and closed immersion.

Proof. We now have a property, that of being an open and closed immersion, that is
stable under pullback and composition, and a diagram

X s //

id   

Y

f
��
X

with id and the injection pid� idq : Y Ñ Y �X Y exhibiting that property. Thus, it
follows directly from Lemma 2.1.1 that s is an open and closed immersion. �

Lemma 2.2.8. Given covering maps f : Y Ñ Z and g : X Ñ Z, any section
s : Y Ñ Y �Z X is an open and closed immersion.

Proof. We know by Lemma 2.2.6 that Y �ZX Ñ Y is a covering map. It then follows
from Lemma 2.2.7 that s is an open and closed immersion. �
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Lemma 2.2.9. For any two points x and v in X, if there exists a path qv : r0, 1s Ñ X,
with qvp0q � x and qvp1q � v, then πtop1 pX, xq � πtop1 pX, vq. Thus, for a given path
component (or for X path-connected), it makes sense to talk about πtop1 pXq.

Proof. First, �x x and v in X, connected by path qv : r0, 1s Ñ X, with qvp0q � x and
qvp1q � v, and rx in f�1pxq � Y . For g1 in πtop1 pX, xq a homotopy class of loops starting
and ending at x, let g be any path representative of g1. Then the concatenation of
qv � g � q

�1
v represents a loop beginning and ending at v. Since we can easily make a

loop from x out of a loop from v by reversing the conjugation of the concatenation,
there is a 1 : 1 relationship between homotopy classes of loops at x and v, and so
πtop1 pX, xq � πtop1 pX, vq. This also implies that any lifting of the path qv � g � q

�1
v

represents a path beginning and ending at points in the �ber over v, the selection of
qv speci�es both an isomorphism between the fundamental groups and an action of
πtop1 pX, xq on f�1pvq, implying also a homeomorphism between f�1pxq � f�1pvq � S,
some S with the discrete topology. �

Next, we establish a useful property of morphisms of covering spaces.

Lemma 2.2.10. For Y
f1Ñ X, Y 1 f2Ñ X covering spaces of a connected topological

space X, with Y connected, if there exists a continuous map g : Y Ñ Y 1 such that
f1 � f2 � g bringing y in Y to y1 in Y 1 for any y in Y , it is the only such map to do
so.

Proof. Consider the following diagram:

Y 1

f2

��

Y 1 �
X
Y 1

p1

oo

p2

��
X Y 1f2oo

id�id

gg

We begin by noting that the composition p2 � pid� idq is the identity on Y 1, making
pid � idq a section. From this, we know by Lemma 2.2.8 that pid � idq is an open
and closed immersion. Let us take another map g1 from Y 1 to Y commuting with the
covering maps f1 and f2 bringing y to y1. We now wish to show g � g1.

From here, we consider the pullback Y �
Y�
X
Y
Y 1 in the following diagram:

Y

g�g1

��

Y �
Y�
X
Y
Y 1

q1
oo

q2

��
Y 1 �

X
Y 1 Y 1id�idoo

By Lemma 2.2.4, we have shown that as pid � idq is an open and closed immersion
into Y 1 �

X
Y 1, q1 must be as well. As we've taken Y to be connected, this means that

the image of q2 must be either the empty set or all of Y . As Y �
Y�
X
Y
Y 1, unwinding
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de�nitions, amounts to tỹ in Y : gpỹq � g1pỹqu, with q2 either g or g1, we already
know this set to contain y, and so its image is nonempty. Therefore, the functions g
and g1 agree on all of Y , and so, g � g1. �

Lemma 2.2.11. πtop1 pX, xq �Aut( rX), for rX πÝÑX the universal covering of X.

Proof. Returning to rX, we note that, as it is path-connected, for any two points rx
and rx1 P π�1pxq, there exists a path r connecting the two, and as such, π � r is a path
in X, implying that πtop1 pX, xq acts transitively on π�1pxq.

Take now any loop rp � rX starting from rx. As rX is simply connected, rp is contractible
to a point through homotopy h : r0, 1s � r0, 1s Ñ rX such that hp0, tq � rpptq and
hp1, tq � hps, 1q � rx for all ps, tq in r0, 1s � r0, 1s. Then π � h is a homotopy from
π � rp to the constant path x, rendering π � rp represented by the identity in πtop1 pX, xq,
which must therefore act freely on π�1pxq. Thus, π�1pxq is isomorphic to πtop1 pX, xq
as a πtop1 pX, xq�set.

By Lemma 2.2.10, we have the result that it is a universal property of rX that for

any Y
f
Ñ X, y in f�1pxq, rx in π�1pxq, there exists a unique covering map rX g

Ñ Y

such that g: rx ÞÑ y and f �g � pi. From here, we can surmise that, as rX is a covering
space of X, for any two rx, rx1 in π�1pxq there exists a unique covering map g1: rX Ñ rX
such that rx ÞÑ rx1 and π �g1 � π. As g1 is a covering map, it is a local homeomorphism
surjective over rX, and, invoking Lemma 2.2.10 again, invertible, which makes it a
bijective local homeomorphism. Thus, it is a homeomorphism, which makes it an
automorphism of rX πÝÑX. Note also that any such automorphism is also a covering
map bringing elements of the �ber to one another, and that there is therefore a unique
automorphism bringing any given rx to a given rx1. Therefore, Aut( rX) acts freely and
transitively on π�1pxq, as does πtop1 pX, xq, rendering them isomorphic as groups. �

This reduces our proof of Theorem 2.2.2 to the following: Show Aut(FfinX )�{
Autp�qX. For ease of notation, let us denote the group Autp rXq as G.

Proof. (Theorem 2.2.2) Now, we take any Y
f
Ñ X, and equip X̃ with covering maps

g1, g2: X̃ Ñ Y and Y with automorphism ν such that the following diagram com-
mutes:

rX

π

88

g1 //

g2

��

Y

ν

��

f

��
Y

f // X

The speci�cation of g1 and ν uniquely determine g2 as the unique pointed mapping
bringing x̃ ÞÑ ν � g1px̃q. However, there exists some x̃1 in g�1

1 (g2px̃))� π�1pxq, and so
there must exist automorphism χ: X̃ Ñ X̃, x̃ ÞÑ x̃1. Therefore, every automorphism
of a covering space over X is determined by a (not generally unique) automorphism
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of X̃: rX
χ
��

g1 //

g2

��

Y

ν

��

f

��rX g1 // Y
f // X

Take Y
f
Ñ X, with G ü f�1pxq � Y in the way speci�ed above. Because

any G-set is the disjoint union of its orbits, we can assume Y connected such that
Gü f�1pxq transitively without loss of generality, since Aut(Y

²
Y 1) is determined

by Aut(Y ) and Aut(Y 1). This, as above, guarantees that G acts transitively on the
�bers of Y over X.

We recall from Group Theory that every transitive G-action on a set (call it Z)
is isomorphic to its action on left H-cosets by left-multiplication for some subgroup
H � G, the stabilizer of any z in Z. Also, h �H � h�1 = Stab(h � z) for all h in G.

For the time being, we restrict our discussion to the case in which this H C G
is normal, which, to associate it with a particular Y , we will denote NY C G. Now,
f�1 � G{NY as G-sets, and Lemma 2.2.10 above tells us that Aut(Y Ñ X) acts freely
and transitively on f�1pxq as G{NY does on G{NY . Thus, Aut(Y Ñ X)� G{NY as
groups.

De�nition 20. For Y a topological space and � an equivalence relation on Y , we
can create a quotient space Y{� whose points are the equivalence classes of points of
Y under �. We topologize this space with the quotient topology, which has as open
sets those sets with open preimages under the map Y Ñ Y{�, which sends each point
y in Y to its equivalence class under �. Points y, y1 in Y such that y � y1 are said to
be glued together under this map.

De�nition 21. (Galois Covering) Note also that for any normal NCG, we can create
a quotient map gluing N � x̃ (each N -orbit) together creating a quotient space and
covering map X̃{N ÝÑ X. We then denote X̃{N as Y N .

For N of �nite index in G, Y N is then a �nite cover of X, and all �nite coverings

Y
fYÑ X with automorphism groups �nite quotient groups of G can be created in this

way (or are isomorphic to one created this way). Such a covering is called a normal
or Galois covering.

Now, let the following be a pointed map of �nite covering spaces.

Y

fY   

qY,Y 1 // Y 1

fY 1
��
X

qY,Y 1 induces a surjective homomorphism rqY,Y 1 : Aut(Y Ñ X)� Aut(Y 1 Ñ X),
where rqY,Y 1 : ϕY ÞÑ qY,Y 1 � ϕ � q�1

Y,Y 1 . Now, rqY,Y 1 : ϕY ÞÑ qY,Y 1 � ϕ � q�1
Y,Y 1 is given both

its well-de�nition and surjectivity from the unique existence of such a map, with
the added note that Aut(Y 1 Ñ X)ü f�1

Y 1 pxq freely and transitively, means that a
mapping whose image acts transitively is therefore necessarily surjective.
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From here, Aut(Y 1 Ñ X)� AutpY Ñ Xq{NY,Y 1 , for some normal NY,Y 1CAut(Y Ñ X).
This means that Aut(Y 1 Ñ X) is contained within Aut(Y Ñ X) as a subgroup.

We now create a partial ordering of �nite covering spaces, ordered by the existence
of such a map (i.e. Y ¥ Y 1 if such a qY,Y 1 exists). Note also that this partially ordered
set is identical to that created by partially ordering their automorphism groups by
inclusion.

As an aside, we recall from group theory that any subgroup of �nite index contains
a normal subgroup of �nite index, and therefore all �nite covering spaces Y 1 ¤ Y for
Y some �nite Galois covering. The existence of this surjective map means that any set
of �nite covering space-morphisms tϕY |Y Ñ X �nite u which commute with pointed
maps ϕY 1 entirely determined by ϕY . We therefore may reduce Aut(Ffin) to the set
of �nite covering-space automorphisms
tϕY |Y Ñ X a �nite Galois coveringu which commute with pointed maps. Fortunately,
as these maps induce a partial ordering on the automorphism groups connected by
surjective homomorphism, we can create Aut(Ffin)� limÐÝAutpY Ñ Xq for Y Ñ X
normal.
� limÐÝ

G{NY for Y Ñ X normal.
� limÐÝ

G{N for N CG normal.

� {πtop1 pX, xq. �

2.3 Galois Theory: Further A�eld

If the above correspondence between subgroups of an automorphism group and surjectively-
mapping-space sounds disconcertingly familiar to previous students of Galois Theory,
such students are in excellent company. In fact, it is partially by deep result (as
we will see) and partially by design (restriction to �nite covering spaces) that the
above example so closely mirrors the fundamental results of Galois Theory. For those
less familiar, we provide the following primer, in which we must quote all relevant
information directly from Chapter 7 of [Cox] without proof for want of space.

De�nition 22. An ideal of a ring R is a subset I � R such that, for any i, i1 in I
and any r, r1 in R, the element pi � rq � pr1 � i1q is also in I, for � and � the additive
and multiplicative binary operations on R respectively

De�nition 23. The uniquely smallest ideal of a commutative ring R which contains
an element r is called the ideal generated by r, and is denoted   r ¡.

De�nition 24. For I any ideal of a commutative ring with unit R, we de�ne a
quotient map to be a mapping ϕ from R to the set of equivalence classes tr � IurPR
(such that any two elements r, s in R are in the same equivalence class if there exists
some i in I such that r � i � s) which maps an element r to its equivalence class.
By inspection, this set inherits from R the structure of a commutative ring with unit,
which we denote the quotient ring R{I, and which makes ϕ a homomorphism. This
ring is isomorphic to the target of any surjective homomorphism of rings ϕ1 : R Ñ S

such that the kernel ϕ1�1p0q is exactly p.
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De�nition 25. An ideal I of a commutative ring R is called prime if, whenever
elements a and b of R satisfy a �b an element of I, then a or b or both are contained in
I as well. A prime ideal is called maximal if it is the only proper ideal which contains
all its elements.

De�nition 26. A commutative ring with unit R is called an integral domain if the
ideal t0u in R is a prime ideal. It is called a �eld if every element which is not the
additive identity has a multiplicative inverse.

Lemma 2.3.1. The quotient ring R{I is an integral domain if and only if I is prime
in R, and it is a �eld if and only if I is maximal in R.

For R a commutative ring with unit, it is often useful to addend elements with
speci�c properties through ring adjunction. The simplest adjoined element is a for-
mal variable which interacts with the other elements of R only as determined by
the formal binary operators without any special relations. However, to instill useful
properties into the variables it is often necessary to force relations by adjoining addi-
tional elements speci�cally to act in these relations in quotient rings. For example, if
Rrxs requires that x have a multiplicative inverse, the quotient ring Rrxsrys{  x � y � 1 ¡

associates the ideal generated by x � y � 1 to the additive identity, rendering y the
appropriate inverse to x. More generally, we can adjoin an element α to the ring R

through the evaluation homomorphism Rrxs Ñ Rrαs � tfpαq|fpxq P Rrxsu.
Adjunction is also used in �elds. For F a �eld, it may be necessary to add elements

with various properties, depending on our purposes, often the roots of polynomial
equations. For example it may be particularly useful for an element a in F to have a
square root, where currently it does not. In this case, the quotient ring Frxs{  x2 � a ¡

will provide a square root to a, with x � a�1 its inverse, but in this case, either the
image of x or that of its additive inverse can be used as a square root of a.

Adding such an element creates a new �eld entirely, which we will call L. Such a
�eld can be considered a vector space over F, wherein L � F�α �F�α2 �F� ..., with
the di�ering powers of α forming a basis over F.

De�nition 27. A �eld L is called an extension over F if there exists an injective
homomorphism of �elds FÑ L. In this case, we identify F with its image under this
homomorphism, and may refer to F � L as a sub�eld of L

Of course, if α is the root of a polynomial equation over F, it satis�es a relation
that will render only �nitely many of these dimensions linearly independent.

De�nition 28. An element α of F is called algebraic over F if there exists some
polynomial f in Frαsrxs such that all coe�cients of f are in the image of the inclusion
F Ñ Frαsrxs and f maps to the additive identity under the evaluation morphism
Frαsrxs{  x� α ¡. Intuitively, we can consider this equivalent to saying that α is the root
of a polynomial f 1 in Frxs. If α is not algebraic over F, we say it is transcendental.

Lemma 2.3.2. For F a �eld, and α algebraic over F, the ring Frαs is again a �eld.

As such, we get the following:
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Lemma 2.3.3. [Primitive Element Theorem]: For L a separable extension of F, L
is a �nite-dimensional F-vector space if and only if it is isomorphic to Frαs for some
α algebraic over F.

De�nition 29. In this case, we call the dimension the degree of L over F, denoted
rL : Fs. If α is not algebraic over F, we say rFpαq : Fs � 8.

De�nition 30. An extension L � F is called algebraic if every element in L is
algebraic over F.

De�nition 31. Similarly, an extension L over F is separable if, for all α in L, the
minimal polynomial of α over F is separable, or has distinct roots (which is to say, it
is square-free when split into linear factors).

Take note that we will restrict our discussion to separable extensions in the interest
of scope: All extensions and polynomials may be assumed to be separable from this
point onward.

Such an α is generally a root of several such polynomials with coe�cients in F,
but there is one of particular importance.

De�nition 32. The minimal polynomial of α over F is the unique monic polynomial
f such that for all polynomials g in Frxs with fpαq � 0, g is a multiple of f .

Lemma 2.3.4. For α algebraic over F, fpαq � 0 and f irreducible in F if and only
if f is the minimal polynomial of α over F.

Now, any �eld extension K over L is automatically a �eld extension over F. The
degree rK : Fs � rK : Ls � rL : Fs. With this transitivity, we can construct a
partial ordering of all �elds by inclusion, where F ¤ K if there exists an injective
homomorphism of �elds F Ñ K. The chains formed by this arrangement are often
referred to as towers of �elds.

Of particular importance are extensions called splitting �elds.

De�nition 33. The splitting �eld of a monic, non-constant polynomial f in Frxs is
the smallest �eld L containing F such that f factors (or "splits") into linear factors

fpxq �
n¹
i�1

px� αiq, αi in L. This �eld is L � Fpα1, ..., αnq, and it is unique up to

a non-unique isomorphism to any other splitting �eld of f over F which carries the
image of F from one injection to its image in the other.

De�nition 34. Such an isomorphism LÑ L for L an extension of F, which preserves
the image of F in L is called an automorphism of L over F, or an F-automorphism of
L.

Similarly, for, αi, αj zeroes of the same irreducible separable polynomial in Frxs,
there exists an isomorphism Fpαiq

�
Ñ Fpαjq which preserves F. This isomorphism can

be extended to an automorphism of the splitting �eld which carries Fpαiq to Fpαjq
while preserving F underneath. Not all �eld extensions form the splitting �eld of any
polynomial. In fact:
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Lemma 2.3.5. For L the splitting �eld of f in Frxs, g in Frxs irreducible, g either
splits completely in L or is irreducible in Lrxs as well.

This leads to the concept of a normal extension.

De�nition 35. A normal extension is an extension L � F such that every irreducible
g in Frxs either splits completely or is irreducible in L.

All splitting �elds are normal extensions, and all normal extensions of �nite de-
gree are splitting �elds. As our focus is algebraic extensions, we may use the terms
interchangeably in the context of �nite degree. The term Galois Extension may also
be used to refer to �nite normal �eld extensions.

De�nition 36. The adjunction of one or more roots of an irreducible polynomial
which do not generate all conjugate roots creates a �eld extension which is not normal.
Such an extension is called an intermediate �eld K between the base �eld F and the
splitting �eld L, such that L � K � F is a tower of �elds.

Splitting �elds are also normal extensions over their intermediate �elds, and just
as there exists a group of �eld automorphisms of L which �x F, a subgroup of these
automorphisms �x K.

De�nition 37. The group of automorphisms of a �eld extension which �xes the base
�eld is called the Galois Group G of the extension, or Gal(L/F). These automor-
phisms act by permuting the conjugate roots of the polynomial associated to the
splitting �eld.

For tαiu in K, only those elements of G which �x tαiu are elements of Gal(L/K).

Theorem 2.3.6. (The Fundamental Theorem of Galois Theory) For L � F a Ga-
lois extension, intermediate �elds exist in bijective correspondence to subgroups of
Gal(L/F), with an intermediate �eld K corresponding to its stabilizer under the ac-
tion of Gal(L/F) on its elements. This correspondence associates to each subgroup
the largest intermediate �eld �xed by the action of Gal(L/F) on the elements of L by
permuting conjugate roots, called its �xed �eld.

As the permutation of these roots generates �eld automorphisms, it should come
as no surprise that they are, in many ways, algebraically interchangeable up to the
action of the Galois group, and in fact, the �xed �elds of conjugate subgroups are
isomorphic to one another, as all conjugate roots satisfy the same minimal relation
required for them to interact with elements of F in any meaningful way.

Theorem 2.3.7. The �xed �eld of a normal subgroup of the galois group of a normal
extension is itself a normal extension over the base �eld.

Proof. For L � K � F, L normal over F, and ς in Gal(L/F), we call ςK its conjugate
�eld, and as group theory dictates, the stabilizer of ςK is ςHς�1 for H the stabilizer
of K. A normal subgroup, unique in its conjugacy class, is associated to a �eld such
that conjugation of the roots does not a�ect the �eld. Thus, for g in Gal(L/F), and
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α in KH the �xed �eld of H a root of separable f in F, g � α in KH as well. Now,
as the Galois group of a normal extension acts transitively on the set of conjugate
roots of a particular irreducible f , this means that K consists of the union of whole
Gal(L/F)-orbits, and so either an irreducible polynomial in F splits completely in K
or remains irreducible, so K � F must be a normal extension as well. �

We can then introduce Ω � F the separable closure of F.

De�nition 38. For F a �eld, the separable closure Ω of F the unique (up to isomor-
phism) �eld containing F in which all separable elements of Frxs split completely but
such that every element α in Ω is algebraic over F.

While this is clearly and by construction a normal extension, note that it is not
generally Galois, as the extension is not generally �nite. However, we can still describe
the group Gal(Ω/F) of F-preserving automorphisms of Ω.

De�nition 39. The group Gal(Ω/F) of F-preserving automorphisms of Ω is called
the Absolute Galois Group of F.

Theorem 2.3.8. The Absolute Galois Group Gal(Ω{F) of F is isomorphic to limÐÝGalp
L{Fq

for all Galois extensions L � F.

Proof. In fact, we can recover the action of the Galois groups of all intermediate �elds
on conjugate roots directly from the action of Gal(Ω/F). The uniqueness (up to iso-
morphism) of a splitting �eld means that Ω must also contain as sub�elds all Galois ex-
tensions L of F, and must therefore also have a group of L-preserving automorphisms.
Any F-preserving automorphism over L can be extended into an automorphism of Ω,
and so there must exist a surjective homomorphism π: Gal(Ω/F)�Gal(L/F). The
latter is �nite, and so the kernel of this surjection must be a normal subgroup of
�nite index. And because the Galois Group of a given Galois extension determines
the behavior of its intermediate �elds, we need only consider the Galois groups of
Galois extensions in determining the equivalence of the Absolute Galois Group and
the projective limit of the Galois Groups of Galois extensions. �

It will not have escaped the reader's attention that we can consider the Absolute
Galois Group's governance of the behavior of Galois Groups of �nite extensions as

analogous to that of {πtop1 pX, xq on automorphisms of �nite covering spaces of X, with
Galois extensions corresponding to Galois coverings. In some sense (which we will
make rigorous later) we are able to construct out of the conjugate roots tαi|fpαiq � 0u
a �ber over the image of x in the composed mapping Frxs Ñ Frxs{  f ¡ Ñ Ω. Such
a construction, however, relies on the tools provided by objects known as schemes,
which we discuss next.
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Chapter 3

Schemes and Sheaves

This analogy was formalized by Alexander Grothendieck, who discovered working
with a class of mathematical object called schemes, which are of use in generalizing
the algebraic varieties of rings, that the notions of �nite �eld extension and �nite
topological coverings could both be generalized in the language of scheme morphisms.
We devote this chapter to a discussion of the structure of these objects. However, the
structure of a scheme is provided by an overlaid object called a sheaf, which merits a
small digression.

3.1 Sheaves

"For life is tendency, and the essence of a tendency is to develop in the form of a
sheaf, creating, by its very growth, divergent directions among which its impetus is
divided."

-Henri Bergson

Rigorously speaking, a sheaf is a presheaf which satis�es certain special condi-
tions, and so we will begin by de�ning the presheaf.

De�nition 40. A presheaf over a topological space X is a contravariant functor
from the category OpenpXq of open sets of X (whose morphisms are provided by
inclusion maps) to another category C. For our purposes, we will be discussing only
the case in which C is the category Ring of commutative rings with unit. A presheaf
of commutative rings with unit O is a mapping which associates to each open set U
of a topological space X a commutative ring with unit OpUq, and to each inclusion of
open sets V � U � X a homomorphism of rings resU,V : OpUq Ñ OpV q which obeys
the following properties:

1. resU,U is the identity map on OpUq for all open subsets U � X.

2. The restriction maps must commute: for all open sets U , V , W in X, W � V �
W � X, resU,W � resV,W � resU,V . Note that the order of composition is what
gives contravariance.

23
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For such a presheaf to qualify as a sheaf of commutative rings, it must also satisfy
two properties known as the sheaf axioms

De�nition 41. A sheaf is a presheaf which satis�es the following sheaf axioms:

1. The Local Identity Axiom: For any tUiu such that
�
i Ui � U is an open cover

of U � X open, then for any s, t in OpUq such that resU,Uipsq � resU,Uiptq for
all i, then s � t.

2. The Gluing Axiom: For any tUiu such that
�
i Ui � U is an open cover of

U � X open, then for every set tsi : si in OpUiqui such that resUi,Ui
�
Ujpsiq �

resUj ,Uj
�
Uipsjq, then there exists s in OpUq such that resU,Uipsq � si for all i.

These are sometimes combined for the sake of elegance into a single axiom, which
states that for any tUiu,

�
i Ui � U an open cover of U � X open, then the ordered

set of mappings presU,Uiq : OpUq Ñ
¹
i

OpUiq is an injective map whose image consists

of those families tsi : si in OpUiqu whose restriction morphisms agree pairwise on the
intersection of any two elements of the cover. This is to say, for every such family,
there exists a unique element s in OpUq such that resU,Uipsq � si for all i. (The section
guaranteed by the Gluing Axiom is unique). Often, this axiom is glibly summarized
in the following way:

Lemma 3.1.1. A presheaf of commutative rings O is a sheaf if and only if the fol-
lowing sequence is exact for every open set U of X and every covering tUiu of U :
0 Ñ OpUq Ñ

¹
i

OpUiqÑ
¹
i,j

Ui
£

Uj Ñ 0,

where the �rst arrow represents the only homomorphism from the trivial ring, the
second arrow represents the mapping (resU,Ui), and the pair of arrows together has as
its kernel the di�erence kernel of the pair of mappings resUi,Ui

�
Uj and resUj ,Ui

�
Uj .

De�nition 42. The di�erence kernel or binary equaliser of two morphisms f, g :
X Ñ Y consists of all points x in X such that fpxq � gpxq in Y . It can be thought
of as the kernel of the map x ÞÑ pf � gqpxq, or, in the language of �ber products,
the intersection X �

Y
X
�
tpx, xq P X �Xu of the �ber product of f and g with the

diagonal of X �X.

For our purposes, it is salient only that the kernel of the double-arrow map-
ping (and, by exactness, the image of the injective mapping OpUq Ñ

¹
i

OpUiq)

consists exactly of those elements psiq P
¹
i

OpUiq ÞÑ 0 such that resUi,Ui
�
Ujpsiq �

resUj ,Ui
�
Ujpsjq.

De�nition 43. The elements of the ring OpUq are called the sections of O over U .
The sections of OpXq are called global sections.
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If these three equivalent de�nitions of a sheaf seem redundant, this is intentional.
Sheaves are a di�cult topic upon �rst approach, and often a di�ering initial perspec-
tive aides in understanding. If the concept is still di�cult, it may help to consider
the metaphor of the sheaf itself. The idea is that each element of OpXq, the global
sections, represents the end of a stem of grain, the length of which weaves through
each of the contained open sets, assuming a slightly di�erent shape at each point
along the way. Each stem winds di�erently, but at each point along its length, those
nearby are (at the risk of punning) bundled together by a ring, not unlike a sheaf of
grain.

It is also often useful to discuss the behavior of a sheaf at a point x. Inconveniently,
sheaves do not associate rings to points, only to open sets, and txu is rarely an open
set. We might instead consider looking at the behavior of the sheaf on the smallest
open set containing x, but again, under most topologies, such a thing does not usually
exist. Taking the intersection of all open sets which contain x would get us closer,
but with no guarantee that the resulting set would be open with a ring associated to
it. The solution to this problem is a vague analogy of the above attempts, but done
over the rings associated to the open sets rather than the sets themselves.

De�nition 44. For a sheaf O and a point x, we call the Stalk of O over x the direct
limit of the rings OpUq for all open sets U containing x;
This we denote Ox :� limÝÑ

UQx

OpUq � >UQx OpUq{�, where for u in U and v in V , with

U and V open sets of X, u � v if there exists some open set W � U
�
V with W

containing x, such that resU,W puq � resV,W pvq.

3.2 Schemes

"The mind is never satis�ed with the objects immediately before it, but is always
breaking away from the present moment, and losing itself in schemes of future felicity."

-Samuel Johnson

3.2.1 The A�ne Case: The Best-Laid Schemes

A sheaf over any category can be laid over any topological space, but Grothendieck's
insight was to overlay a sheaf of rings onto a ring itself, or rather, onto a ring's
spectrum topologized under the Zariski topology.

De�nition 45. The spectrum, SpecpRq, of a commutative ring with unit R is the set
of prime ideals I in R.

The Zariski Topology topologizes this set with a basis of open sets each associated
as the distinguished open set Uf of a particular element f of R. We will de�ne this
rigorously momentarily, but in order to understand these basic open sets, we must
�rst specify a method of turning an element f of R into a quasi-function over SpecpRq
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(we say "quasi-function" because it sends di�erent elements of SpecpRq to di�erent
targets).

For a given p in SpecpRq corresponding to the prime ideal p in R, the fact that
p is prime in R guarantees that the quotient ring R{p is an integral domain, to which
we can then adjoin multiplicative inverses to all non-units to form Kppq, the quotient
�eld or �eld of fractions of the ring R{p. It is this �eld into which we de�ne the
quasifunction associated to an element f of R. At the risk of abusing notation, we
say f : SpecpRq Ñ Kppq, where f : p ÞÑ pφ � πqpfq, for π the quotient map R Ñ R{p
associating f to the equivalence class tf�q|q P pu in R{p, and φ the injective inclusion
map R{p ãÑ R{p � Kppq. The salient feature of the mapping f : p ÞÑ fppq in Kppq is
that fppq � 0 if and only if f is contained in p.

De�nition 46. (Regular Function) We then say that this f in R de�nes a regular
function f over SpecpRq, which is the mapping f : SpecpRq Ñ R{p Ñ Kppq given
above.

In this way, we can talk about the zeroes of the regular function f , by which we
mean those elements p of SpecpRq corresponding to prime ideals p which contain f .
Beyond this, we can refer to the intersections of the sets of zeroes of two or more
regular functions: For S � R, we can de�ne V pSq :� tp in SpecpRq | fppq � 0 for all

f in Su. Note that V ptfuq consists of the zeroes of f , and V pSq �
£
fPS

V ptfuq.

De�nition 47. The Zariski Topology designates each V pSq, S a subset of R, a closed
set, and associates to each such S the open set SpecpRqzV pSq. Because V pSq is itself
an intersection of closed sets V ptfuq, each SpecpRqzV pSq is the union of open sets
SpecpRqzV ptfuq, called the distinguished open set Uf of f , which can be thought of
as those elements of SpecpRq corresponding to prime ideals in R which do not contain
f . (In less precise but more plainspoken language, these can be thought of as the
ideals generated by prime elements which do not divide f , disregarding the zero ideal,
which is also prime for any integral domain). These distinguished open sets form the
basis of the Zariski Topology.

The goal at this point is to associate to this topology a sheaf of commutative
rings with unit, and while there are several available (associating the trivial ring to
each open set constitutes a valid sheaf, for one), Grothendieck created a sheaf of rings,
called the structure sheaf of SpecpRq, which encodes much of the structure of R itself.

De�nition 48. The structure sheaf O: OpenpXq Ñ Ring, forX the topological space
formed by topologizing SpecpRq with the Zariski topology and Ring the category of
commutative rings with unit, is the unique sheaf such that for Uf � XzV ptfuq the dis-
tinguished open set of X associated to the element f of R, OpUq :� Rrxs{  f � x� 1 ¡ �
Rr 1

f
s, denoted Rf .

Please note a few things about this association:

1. For f � 0, the closed set V ptfuq is all of SpecpRq, in which case Uf � H,
so   f � x � 1 ¡�  1 ¡, the unit ideal containing the entire ring R. Thus,
OpUf q � t0u, the trivial ring.
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2. The spectrum of a quotient ring is homeomorphic (under the Zariski Topology)
to the spectrum of the original ring without those prime ideals included in the
kernel of the quotient mapping. This means that SpecpOpUf qq � Uf , as the
adjunction of 1

f
creates a ring isomorphic to the adjunction of t 1

f1
, ..., 1

fn
u for

tfiu the prime factors of f . Thus, as R � R is generally not considered a prime
ideal, the introduction of a multiplicative inverse means that the previously
prime ideal   fi ¡ now also contains fi �

1
f
�
¹
j�i

fj � 1, and so   fi ¡ now

generates all of Rr 1
f
s, making it no longer a prime ideal.

3. This suggests a rather natural restriction morphism, which we elaborate on
presently: For f � g � h an element of R, the closed set V ptfuq is clearly
V ptguq

�
V pthuq, so contrapositively, Uf � Ug

�
Uh. How then to de�ne resUg ,Uf ?

Because both Rf and Rg contain canonical copies of R, the image of R in one
maps to the image of R in the other. But what of 1

g
? Because this must be a

homomorphism, resUg ,Uf p
1
g
q � g� 1 must be equal to 0 in Rf just as

1
g
� g� 1 � 0

in Rr 1
f
s, so 1

g
ÞÑ 1

f
� h such that h�g

f
� 1 � 0 as required.

4. This functor, de�ned over the basic open sets, has not yet given us a complete
picture of what the full sheaf must look like. While it is true that a sheaf de�ned
over a base of open sets extends uniquely to (and therefore well-de�nes) a sheaf
over the whole space, this is not immediately obvious, and certainly not to the
new student of sheaves. As of yet, we have only laid the groundwork for this
extension. We will attempt to �x this now.

Theorem 3.2.1. The structure sheaf as given is well-de�ned and unique.

Proof. Our �rst step will be to regain our bearings and determine that the sheaf
axioms hold in the cases we have already ascribed.

1. Clearly, for the above, if f � g�h and c � f �d, then the composition of restriction
maps resUf ,Uc � resUg ,Uf is equal to resUg ,Uc , as the canonical copy of R in one
will map onto the canonical copy of R in the other, and 1

g
ÞÑ h � 1

f
ÞÑ h � pd � 1

c
q

in either case, as c � g � d � h, so h�d
c
is algebraically indistinguishable from 1

g
.

2. Furthermore, resUf ,Uf is by inspection the identity map.

3. As for the combined sheaf axiom, we need only show that for each open covering
Uf �

¤
aPA�R

Ua, of Uf , the distinguished open set of an element f of R, that for

each family of elements trauaPA with ra in Rr 1
a
s such that the restrictions of

ra and rb agree on restriction to every basic open subset Uc contained within
Ua
�
Ub, then there exists a unique rf in Rr 1

f
s � OpUf q such that resUf ,Uaprf q �

ra for all a in the indexing set A.

Well, as we've already demonstrated that the restrictions commute, and any
intersection of basic open sets is a basic open set itself, we need show only
that there exists a unique rf such that resUf ,Uaprf q � ra for all the a in A, for
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each family of sections trauaPA such that the restrictions of ra and rb agree on
Ua
�
Ub for all a and b in A. This is su�cient because all basic open subsets

contained within these will necessarily be agreed upon by commutative diagram.
And, true to form, these restriction morphisms are injective as given, which
takes care of the problem of uniqueness. (The map resUg ,Uf : Rr1

g
s Ñ Rr 1

f
s is

isomorphic to the inclusion Rr1
g
s ãÑ Rr1

g
sr 1
h
s, so the preimage of any element

under a restriction mapping is necessarily either empty or a single element.)

What then guarantees existence? For this, we must look at the rings and basic
open sets themselves. What can we say, a priori, about the sets trau described
above? To begin, Uf �

¤
aPA�R

Ua means that we know Ua � Uf for all a. This

means that for every such a, if a prime ideal p contains a, it must contain f
as well. So, a must divide some power of f , which we can write as f � an � g
for some g, so we can take resUf ,Ua to be the inclusion Rr 1

f
s ãÑ Rr 1

f
sr1
g
s. Thus,

even if we don't know a nicely divides f , the morphism can be considered in
much the same way regardless.

We now consider the set trauaPA, and attempt to constructively prove the exis-
tence of an element rf (which for clarity we will denote without subscript as r)
such that r maps to each ra as required. To begin, we note that ra factors into
ba � p

1
a
qNa , with ba in Rf , for some su�ciently large Na, which means that aNa �ra

is an element of Rf . Note that we say "in" in this case under the metaphor of
ring inclusion, associating Rf to its image. It would, of course, be more precise
to say that aNa � ra is contained within the image resUf ,UapRf q. Let us denote
for the sake of convenience res�1

Uf ,Ua
paNa � raq as ha in Rf .

At this point, we take a slight detour.

Lemma 3.2.2. Every a�ne scheme is quasi-compact: every open cover of an
a�ne scheme contains a �nite subcover. In particular, every open cover of an
a�ne scheme by distinguished open sets contains a �nite subcover.

Proof. (Lemma): We now note that the set tauaPA � Rf must necessarily gen-
erate the entire ring Rf as an ideal, or there would exist some prime ideal q in
Rf corresponding to a point q in Spec(Rf ), here identi�ed with Uf , not covered
by the open covering provided. We note also that this correspondence works in
both directions: for any set tauaPA which generate the unit ideal in Rf , the tUau
provide a covering of Uf . Because only �nitely many elements are necessary to
create 1 in any linear combination, every cover therefore necessarily contains a
�nite subcover. �

We can therefore resort to proving the initial claim for tau �nite. All of that is to
say that we can take maxptNauaPAq :� N , removing the problematic possibility
that, say, tNau is an in�nite increasing sequence. We then recall our de�nition
ha :� res�1

Uf ,Ua
paN � raq for convenience.
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Now, because ra and rb agree on all restrictions to distinguished open sets
contained in their intersection, and the intersection itself in particular, we have
bN � ha � pa � bqN � ra � pa � bqN � rb � bN � ha.
As we have shown above, tau generates 1 in Rf , and so there must exist some

collection teauaPA � Rf such that
¸
aPA

ea � a
N � 1 in Rf .

Consider now r :�
¸
aPA

ea � ha. It is our claim that this is the r we've been

looking for.
Clearly, bN � r � bN �

¸
aPA

ea � ha �
¸
aPA

ea � ha � b
N .

But as ha � b
N � hb � a

N for every pair ta, bu in A,

bN � r �
¸
aPA

ea � hb � a
N � hb �

¸
aPA

ea � a
N � hb � 1 � hb � bN � rb

And so, p1
b
qN � resUf ,Ubpb

N � rq � p1
b
qN � resUf ,Ubpb

N � rbq,
Which gives us p1

b
qN � bN � resUf ,Ubprbq � p1

b
qN � bN � resUf ,Ubprq ñ r � rb. Thus,

r � rb for all b by injectivity, and it is therefore the unique element we need to
satisfy the sheaf axiom.

�

This is all well and good, as it de�nes and defends the structure sheaf as such
on the distinguished open sets themselves, but how to extend the sheaf to unions of
basic sets?

De�nition 49. A B-sheaf over a topological space X is a sheaf de�ned over a basis
of open sets B of X.

Theorem 3.2.3. A B-sheaf over a topological space X extends uniquely to a sheaf
over X.

Proof. In the language of an arbitrary sheaf, we say we extend a B-sheaf OB de�ned
over a basis of open sets B of a topological space X to a sheaf O over the whole
topology of X by associating to an arbitrary open set U � X the ring
OpUq :� limÐÝ

V�U,V PB

OpV q

� tpfV q P
¹

V�U,V PB

OpV q such that resV,W pfV q � fW for all W � V � U ; V,W P Bu

�
¹

V�U,V PB

OpV q modulo agreement on restriction morphisms.

It may be dissatisfying to note that, unwinding de�nitions, this essentially amounts
to de�ning the extended sheaf in "that unique way that makes it work as a sheaf."
Bear in mind, however, that the universal property granted from the inverse limit
functor guarantees that the full sheaf O is well-de�ned and unique. �

De�nition 50. (Ringed Space) It is worth noting that a scheme is a special case of
what is called a ringed space, which is to say, topological spaces X equipped with a
sheaf O of commutative rings with unit. Such a space is denoted pX,Oq.
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Note that from now on, we may discuss more than one ringed space at a time,
and will denote each sheaf to specify which space it is over. The above pX,Oq would
become pX,OXq, with the stalk over x in X denoted OX,x.

3.2.2 Generalizing Beyond the A�ne Case: The Grand Scheme
of Things

In much the same way as how any n-manifold can be constructed by the gluing
together of neighborhoods pulled from Rn, (and additionally, how we use this property
to de�ne, evaluate, and overlay manifolds with functions), so too is the relationship
between general schemes and their friendlier A�ne cousins.

De�nition 51. A ringed space pX,OXq is called a scheme if it is locally a�ne, which
is to say, if, for all points x in X, there exists some open set Uα of X containing x such
that the ringed space pU,OUq (with OU :� OX |U the restriction of OX to open sets
contained within U) isomorphic to the a�ne scheme SpecpOXpUqq. This is equivalent

to saying X �
¤
α

Uα, where Uα is an open set of X and is isomorphic to the a�ne

scheme SpecpOXpUαq.

In possession of one or more schemes, it occurs as a natural question how to create
more. Perhaps the simplest method is identifying subsets of a scheme pX,OXq which
are themselves (or are easily made into) locally a�ne ringed spaces. For instance,
as we may notice from the construction of the structure sheaf of an a�ne scheme,
any distinguished open set is itself an a�ne scheme, with the sheaf restricted in the
obvious way. For more complicated schemes, this is not always so simple, although
we may bear in mind that every a�ne open subset itself contains distinguished open
sets which are also a�ne schemes. Note, however, that as a�ne schemes form a
covering of X with distinguished open sets (themselves a�ne schemes) forming the
bases of these sets, that every open subset can be covered with a�ne subschemes,
and that therefore U is what we refer to as an open subscheme. Closed subschemes
also exist: these are made by a quotient map from an a�ne open subscheme Uα
with kernel an ideal J of OXpUαq, thereby associating V pJq as described earlier with
SpecpOpUαq{Jq, which is precisely that ring having as its spectrum the prime ideals of
OXpUαq containing J , obtained by the natural quotient map. This associates V pJq
with SpecpOXpUαq, providing a mapping which respects the sheaf structure, creating
a new scheme in the process.

More simply, we can also disjointly union two schemes together, creating a dis-
connected scheme containing each of the original schemes as open subschemes. One
important aspect of this method is the following:

Lemma 3.2.4. If the original schemes X and Y are a�ne, the union X >Y is a�ne
also.

Proof. Let pX,OXq � SpecpAq and pY,OY q � SpecpBq be a�ne schemes, for com-
mutative rings with unit A and B. Now, let ring C :� A � B, with addition and
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multiplication de�ned coordinate-wise. (The additive identity is p0A, 0Bq, the mul-
tiplicative identity is p1A, 1Bq, and so on). The ideals of this ring are the cartesian
products of ideals in A and B. Now, for pA any prime ideal of A, pA � B must be
a prime ideal of C. This ideal is proper because pA does not contain all of A. It is
furthermore prime because for any element pa �a1, b �b1q of pA�B, with a �a

1 contained
in pA, either a or a

1 (a, without loss of generality) is in pA. And clearly, B contains b.
Thus, pa, bq must be contained in pA�B, rendering pA�B a prime ideal. Therefore,
any ideal of the form pA�B or A�pB, (for pA a prime ideal in A or pB a prime ideal
in B), is a prime ideal in C.

We furthermore claim that these are the only prime ideals of C. To prove this, let
J be an ideal of A and I an ideal of B. If either is a proper ideal which is not prime,
say J , then there exist a, a1 P A such that neither is in J , yet a � a1 is. Thus, for any
i in I, J � I must contain pa, bq � pa1, bq without either pa, bq or pa1, bq being elements
of J � I, so this ideal cannot be prime. Thus, we are left only with prime ideals and
nonproper ideals. Of course, A�B is not a proper ideal of C, and so it cannot be a
prime ideal either. This leaves us only with the product of a prime ideal and a whole
ring or the product of two prime ideals. Suppose then, J and I are prime ideals of
their respective rings. Then let j P J and i P I. As both ideals must be proper, 1A is
not in J , nor is 1B in I. Clearly, however, p1A, iq � pj, 1Bq � pj, iq is in J � I, so this
ideal cannot be prime either. Thus, as a set, at least, SpecpCq � SpecpAq > SpecpBq.

Now we take the a�ne scheme pZ,OZq � SpecpCq and attempt to show that the
inclusion map SpecpAq>SpecpBq Ñ SpecpCq; pA ÞÑ ppA�Bq, pB ÞÑ pA�pBq, induces
an isomorphism of schemes. For pa, bq an element of C, the distinguished open set
Upa,bq is the union of the set of all ideals pA �B and the set of all ideals A� pB such
that prime ideal pA does not contain a, and prime ideal pB does not contain b.

Consider now Up0,1q. pA contains 0 for all pA prime in A, but as prime ideals
are necessarily proper, no prime ideal in B contains 1B. Thus Up0,1q consists of all
A�pB, pB prime in B. As this is a distinguished open set of an a�ne scheme, it must
itself be an a�ne subscheme, isomorphic to the a�ne scheme SpecpOCpUp0,1qqq, where
OCpUp0,1qq � Crxs{  x � p0, 1q � p1, 1q ¡ � t0u �Br1s, where t0u is the trivial ring, the only
ring with the additive identity a unit, and Br1s denoting that the image of x is simply
1B. Perhaps an easier way of viewing this is as the quotient A�B{A� t0u � B. Thus,
B is isomorphic to its image in the mapping above, and, without loss of generality,
so is A.

Now, as these images are disjoint (given that prime ideals are necessarily proper,
so no two elements of X and Y respectively have the same image), and the union of
their image is all of Z, we have given an isomorphism from the disjoint union of a�ne
schemes X and Y onto the scheme Z, showing that the disjoint union also constitutes
an a�ne scheme. �

Or, to draw o� the topological properties of schemes, for SpecpRq � U � V as
schemes, U a subscheme of X and V a subscheme of Y , we can create a new scheme
Z via a quotient mapping which glues V onto U , joining the topologies at that set.
To see how X �ts into Z, we take X Ñ X > Y the obvious inclusion and compose
it with the quotient map X > Y Ñ X > Y{�, where u � v if u is in U , and u, v map
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to the same point in SpecpRq under the pre-established isomorphisms. The union of
any basis of X and any basis of Y have images which clearly cover the quotient space
and map locally homeomorphically, so the quotient space is still a scheme.

De�nition 52. A locally ringed space pX,Oq is a topological space X a�xed with a
sheaf of commutative rings with unit O such that every stalk Ox, for all x in X, is
local (containing a unique maximal ideal).

Lemma 3.2.5. All schemes are locally ringed spaces.

Proof. For pX,OXq an a�ne scheme, x in X, and px the prime ideal associated to
x in OXpXq, x is contained in the distinguished open set Uf of every f which is
not contained in px, and so the restriction of every such f to OX,x is a unit. This
makes the stalk OX,x the localization of OXpXq at px, a local ring. Because this
is a (topologically) local property, every point of a scheme contained in an a�ne
subscheme, which must by de�nition be all of them, must have a local stalk. �

We can now add a property which contributes greatly to the "niceness" of a
scheme, that of being locally Noetherian.

De�nition 53. A Scheme pX,OXq is considered locally Noetherian if it admits a
covering of a�ne neighborhoods X � >αUα such that OXpUαq is Noetherian for all
α. This property also imbues the property that every a�ne neighborhood V of X
has OXpV q Noetherian, and that every stalk OX,x over a point x in X is Noetherian
as well, as every quotient of a Noetherian ring is Noetherian, and the adjunction of
�nitely many formal variables to a Noetherian ring creates a Noetherian ring as well.

Lemma 3.2.6. If R is Noetherian, every subset of SpecpRq is quasi-compact.

Proof. If we can show that every covering by basic open subsets has a �nite subcover,
quasi-compactness will hold. Take then a subset tpαu of SpecpRq corresponding to
prime ideals pα of R. We want to show that for every set of elements tfβu in R such
that for every α, there is some fβα in R such that pα does not contain fβα , we can
remove all but �nitely many tfβu without removing that property.

Consider the ideal generated by tfβαu, which must not be contained in pα for
any α. As R is Noetherian, there is some �nite set of �nite linear combinations of
tfβαu which generate this ideal, and so we can take to be tfγu to be the necessarily
�nite subset of tfβαu which makes a non-zero contribution to one of the above linear
combinations. Then the ideal generated by tfγu is still not contained by any pα for
any α, and so there is some fγ not contained in pα for each α, and so the set tUfγu
provides a �nite subcover of tfβu. �

3.3 Morphisms of Schemes

The attentive reader may note that the above constructions rely on mappings which,
as of yet, have not been rigorously de�ned. Let us take a moment to �x that.
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De�nition 54. The following construction provides a morphism of schemes.
Given that a scheme pX,OXq consists of two structures, the topological space X

and the overlaid sheaf of rings OX , it stands to reason that a mapping of schemes
could be determined by where it sends the underlying points and what it does to the
structure sheaf. For this reason, we break down the map pX,OXq Ñ pY,OY q into a
pair of mappings, pψ, ψ#q; ψ : X Ñ Y a continuous mapping, and ψ# : OY Ñ ψ�OX

a natural transformation of sheaves over Y (morphism of contravariant functors).
The de�ning characteristic of a continuous mapping of topological spaces ψ :

X Ñ Y is that it induces a mapping of open sets in Y to open sets of X, Y � W ÞÑ
ψ�1pW q � X. We can easily categorize the set of open sets over X by making the
sets themselves objects and the morphisms between them inclusions, resulting in the
category OpXq, with OpY q de�ned analogously. In this perspective, the mapping ψ
induces a covariant functor ψ�1 : OpY q Ñ OpXq which respects inclusion.

At the risk of overcomplicating a relatively simple construction, we can now con-
struct a sheaf of rings over Y by composition, de�ning ψ�OpXq : OpY q Ñ pRINGq
as ψ�OX :� OX � ψ�1. The reason for making this mapping into a functor is
that, under this perspective, we can consider φ# a natural transformation of con-
travariant functors (which, we may recall, is precisely what sheaves are). This
natural transformation can be thought of as a collection of ring homomorphisms
tψ#

W : OY pW q Ñ ψ�OXpW quW�Y open which commute with the restriction morphisms
imposed by the sheaves. Please note that, as sheaves are contravariant, although the
map is from X to Y , the induced ring homomorphisms are from the rings over Y to
the rings over X.

It may be more comfortable to consider this from the opposite perspective: given
a ring homomorphism RÑ A, we can recover a map SpecpAq Ñ SpecpRq associating
to every prime ideal in A its preimage in R. (Recall that we do not by convention
consider the trivial mapping to be a homomorphism unless A is the trivial ring,
requiring that 1R ÞÑ 1A, eliminating the possibility that the preimage of a prime ideal
in A might contain the entirety of R). Thus, it might be just as valid to consider a
mapping of schemes X Ñ Y as a collection of ring homomorphisms linking OY Ñ OX ,
inducing a reverse mapping of prime ideals, which we then consider the points of the
schemes, as it would be to take the reverse perspective.

We impose one further restriction on such a mapping ψ: Let p
ψ
ÞÑ q, for p in X

and q in an open set W of Y . Then for f a section of OY pW q, f vanishes at q if and
only if ψ�pfq in ψ�OXpW q � Opf�1pW qq vanishes at p.

We now take a moment to further explore the relationship between mappings of
rings and mappings of schemes, using educational exercises 2.4, 2.16, and 2.17 laid
out in [Hartshorne].

Theorem 3.3.1. ([Hartshorne] Exercise 2.4): For X, SpecpAq schemes with SpecpAq
a�ne, the mapping α : HomSchpX,SpecpAqq Ñ HomRingpA,OXpXqq associating to
every morphism of schemes f : X Ñ SpecpAq the induced homomorphism of rings
ϕf : AÑ OXpXq is bijective.

Proof. Take tSpecpBβqu, the set of all a�ne subsets of X (not only a cover, the whole
basis of the topology of X!). Specifying a map f : X Ñ SpecpAq is equivalent to
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specifying a set of maps tfβ : SpecpBβq Ñ SpecpAquβ, modulo that these mappings
must agree on all glued intersections, well-de�ning the mapping into X. This is
equivalent to a set of maps tϕf,β : A Ñ Bβuβ such that the preimages of two prime
ideals pβ � Bβ, pβ1 � Bβ1 agree whenever pβ and pβ1 correspond to the same point in
X. But this set tϕf,βu is simply a mapping from A into the projective limit limÐÝ

β

Bβ,

which was our original de�nition for OXpXq. �

Theorem 3.3.2. [Hartshorne] 2.16: Given a scheme pX,OXq with a global section
f , the set Xf of points x in X such that the restriction of f to the stalk OX,x of x is
not contained within the maximal ideal mx is an open subscheme of X, and if X is
quasicompact and admits some a�ne cover tUαu such that the pairwise intersection
Uα
�
Uα1 is quasicompact, then OXpXf q � OXpXqr

1
f
s.

Proof. We begin by looking at U , an open a�ne subscheme of X, with OXpUq � B.
We set resX,Upfq � f̄ , and as any restriction to Ox for x in U will have to factor
through f̄ , Xf

�
U � U f̄ (expressing the same notion as Xf , not the distinguished

open set of f). U f̄ contains exactly those elements x of U such that there exists a
distinguished open set Ug of U containing x with resU,Ugpf̄q a unit in OXpUgq. How-
ever, every distinguished open set on which the restriction of f̄ is a unit is necessarily
contained within the distinguished open set Uf̄ of f , and so U f̄ is necessarily con-
tained within Uf̄ . But every restriction of f̄ to the stalk of mx for x in Uf̄ is also a

restriction of resU,Uf̄ pf̄q, which is a unit. Thus, the two sets are identical. U f̄ � Uf̄ .

Thus, Xf �
¤
α

Uα,resX,Uα pfq, the union of the distinguished open sets of resX,Uαpfq

in each Uα, and is an open subscheme of X. �

We now examine the case where X is quasi-compact, and claim that if a global
section a satis�es resX,Xf paq � 0, then there exists some n ¡ 0 such that fn � a � 0
in OXpXq.

Given the limit de�nition of a sheaf over arbitrary open sets, resX,Xf paq � 0 if
and only if resX,Uα,resX,Uα pfq

paq � 0 for every Uα in some a�ne cover, which we can

take to be �nite. (For clarity, we denote resX,Uαpfq as fα and resX,Uαpaq as aα from
now on.) This is, in turn, only true if the injection resUα,Uα,fα paαq � 0 for every α.
This means that aα is in the ideal   Z � fα � 1 ¡ in OXpUαqrZs, which occurs when
fnαα � aα � 0. We then take max

α
pnαq to be n. Then resX,Uαpf

n � aq � 0 for all α,

which makes it exactly 0 by the sheaf axioms.�

We now claim that for b a section over Xf , there exists some N ¡ 0 such that
fN � b is in the image of resX,Xf .

We again examine the restrictions resXf ,Uα
�
Xf , which we now know to be resXf ,Uα,fα .

resXf ,Uα,fα pbq �
bα
fnαα

, with some slight abuse of notation, for some bα in OXpUαq, some

whole number nα, and fα as above. We have speci�ed tUαu as a �nite subcover of
the a�ne cover such that Uα

�
Uα1 is quasicompact for any two sets in the cover. As

there are �nitely many α in our �nite subcover, we can replace bα with bα � f
n�nα , for

n � max
α
pnαq, and in so doing, get resXf ,Uα,fα pbq �

bα
fnα
.
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We next consider the restrictions of bα, bα1 to Uα
�
Uα1 , which we denote b1α, b

1
α1 .

Their restrictions to Xf

�
pUαXUα1q must agree, with Uα

�
Uα1 quasi-compact, and so

we can use the result from the previous subsection of this proof to say that as pb1α�b
1
α1q

must vanish on the intersection, there exists some n1 such that fn
1
� pb1α � b1α1q �

0 in OXpUα
�
Uα1q. We now have two sets of elements tbαu and tb1αu. tbαu are

sections associated to each set of an a�ne cover whose restrictions agree on pairwise
intersections, and so there exists a unique global section c which restricts to each bα.
Likewise, tb1αu are associated to each open set of an a�ne cover of Xf and agree on
pairwise intersections, and so by construction, we can take fn�n

1
� b as the unique

element of OXXf restricting to each b1α. However, because bα restricts to b1α, c must
restrict to fn�n

1
� b on Xf . We then take N � n � n1, which gives us fN � b in the

image of resX,Xf .�
Now, as the restriction of f to Xf has a multaplicative inverse, we can uniquely ex-

tend the restriction map resX,Xf to a morphism OXpXqr
1
f
s Ñ OXpXf q. Any element

of OXpXqr
1
f
s can be written as c

fn
. Take an element of the kernel of this mapping.

By the above, there exists some m such that fm � c � 0 in OXpXq, which necessitates
that c

fn
be zero in OXpXqr

1
f
s. This gives injectivity.

We also have just shown that for any element b of OpXf q, there is some N such
that fN � b is the restriction of some c in OXpXq. However, this means that c

fN
in

OXpXqr
1
f
s must map to b, which yields surjectivity.

Thus, we are given an isomorphism of rings OXpXf q � OXpXqr
1
f
s. �

Lemma 3.3.3. ([Hartshorne] Exercise 17a): Let f : X Ñ Y be a morphism of
schemes. Then if there exists an open cover tUαu of Y such that the induced homo-
morphism of rings ϕα : OY pUαq Ñ OXpf

�1pUαqq is an isomorphism for all α, then f
is an isomorphism of schemes.

Proof. We begin by taking an open a�ne cover tVβu, and an open a�ne cover tWα,βu
of Uα

�
Vβ of distinguished open sets of Vβ. As the map f�1pUαq Ñ Uα is an iso-

morphism, we can identify via isomorphism f�1pWα,βq Ñ Wα,β as well. We note that
the sets tf�1pWα,βqu, tWα,βu are each an open a�ne cover of X and Y respectively,
identi�ed bijectively and isomorphically. As a scheme is de�ned by its construction
by gluing open a�ne sets together, and the correspondance of gluings is provided by
the bijective association between the covers, we get X � Y . �

Theorem 3.3.4. ([Hartshorne] Exercise 2.17b): A scheme pX,OXq is a�ne if and
only if there exist a �nite set of global sections tf1, . . . , fnu such that the open subsets
Xfi are a�ne, and f1, . . . , fn generate the unit ideal in OXpXq.

Proof. (Su�ciency): From Theorem 3.3.1, we know that the isomorphism of rings
OXpXq Ñ OXpXq uniquely corresponds to a morphism of schemesX Ñ SpecpOXpXqq.
We claim this is an isomorphism of schemes. We know f1, . . . , fn generate OXpXq,
and so the distinguished open sets tUfiu form a �nite a�ne cover of SpecpOXpXqq
The preimage of Ufi is simply Xfi , which we have given as a�ne. We also know from
Theorem 3.3.2 that Ufi � Xfi � OXpXqr

1
fi
s. As an a�ne scheme is determined by its

global ring, we know that Ufi and Xfi are isomorphic as a�ne schemes, but we do not



36 CHAPTER 3. SCHEMES AND SHEAVES

know if the given mapping is an isomorphism. Fortunately, we know from Theorem
3.3.1 that there is exactly one morphism of an a�ne scheme to itself which induces
a given isomorphism on its global ring, and that is an isomorphism itself. Thus, by
Lemma 3.3.3, we are done.

In the other direction, for X a�ne, the section 1 in OXpXq clearly generates the
unit ideal, and so the condition is necessary as well as su�cient for a�nity. �

Lemma 3.3.5. For a�ne schemes X � SpecpAq, Y � SpecpBq, and Z � SpecpCq,
with morphisms f : Y Ñ X and g : Z Ñ X, the �ber product Y �

X
Z is well-de�ned

as an a�ne scheme and isomorphic to SpecpB b
A
Cq.

Proof. The construction and bilinearity of the tensor product B b
A
C make its prime

ideals exactly those such that their projection into B and C coincide under the maps
f and g, which gives isomorphism. As the tensor product is, in this case, a ring itself,
we are given a�nity. �

Having associated to a map of schemes a set of ring homomorphisms in the oppo-
site direction, we can now examine an interesting feature of the points of a scheme.
Take a scheme pX,OXq containing a point x. We have already discussed how X must
be locally-ringed, and as such, we can talk about mX,x � OX,x, the unique maxi-
mal ideal of the stalk over x. Recall, from our de�nition of elements of a ring as
quasi-functions over its spectrum, the concept of a residue �eld, the �eld formed by
a quotient map with a maximal ideal as its kernel. Given that OX,x is by de�nition
local, we can associate to it the unique residue �eld OX,x{mX,x, which we denote Kpxq.

Now, a mapping of schemes ψ : pX,OXq Ñ pY,OY q, x ÞÑ y, induces the map
of sheaves ψ# : OY pUq Ñ OXpψ

�1pUqq for U any open set of Y . This means that
ψ# associates to any such y a collection of morphisms of rings tψU : OY pUq Ñ
OXpψ

�1pUqquUQy, and that each ψ�1pUq necessarily contains x as well. The limit
property of stalks over the points x and y allows us to determine from these morphisms
tψUuyPU a map of stalks (morphism of rings) ψy : OY,y Ñ OX,x. It is worth noting
that these mappings of stalks capture many local properties of scheme morphisms,
and, taken together, uniquely determine the morphism itself.

To examine a particular point x in pX,OpXqq, however, we may wish to look at
a mapping directly to this point and nowhere else. From the perspective of X as a
set, this may seem uninteresting, but the associated scheme structure makes it worth
our while. The aforementioned map pX,OpXqq Ñ OX,x{mX,x provides a ready-made
morphism of rings, inducing the morphism of schemes SpecpKpxqq Ñ X,   0 ¡ÞÑ x.
The advantages of examining this mapping stem from that, by de�nition, the �eld
Kpxq has a unique prime (and therefore maximal) ideal, which easily maps onto x
without requiring further speci�cation.

The reader may notice, however, that the niceness of this map is not unique to
SpecpKpxqq. In fact, any �eld K which can be mapped to from OX,x with mx as
the kernel satis�es this property. What we have described here, however, is a map
OX,x Ñ K which can be factored through OX,x Ñ Kpxq Ñ K, and as the kernel of a
ring homomorphism must be an ideal, such a factoring would necessarily have either
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  0 ¡ or Kpxq as the kernel of its �nal step. The latter would require that the
mapping be the trivial mapping, which we consider a homomorphism only onto the
trivial ring, which is not a �eld and cannot be K. Therefore, we can conclude that
Kpxq maps isomorphically onto its image in K, which with slight abuse of notation,
we can associate to an inclusion (extension) of �elds Kpxq � K.

De�nition 55. This mapping, OX,x Ñ K, or rather, the map SpecpKq Ñ txu � X of
schemes which induces it, constitutes what we call a K-rational point in X.

De�nition 56. If K is separably closed, we call a K-rational point a geometric point.

Now, much as the residue �eld Kpxq has the distinction of being the uniquely
smallest �eld such that x is Kpxq-rational, there exists a uniquely smallest �eld L
such that SpecpLpxqq Ñ txu is a geometric point in X. As x is K-rational for �elds
K containing Kpxq, this is, of course, simply the smallest separably closed �eld L
containing Kpxq, which is just �Kpxq, the separable closure of Kpxq, a concept which
we applied to the Galois Theory problem above.

We can now give formal de�nitions of important properties which morphisms of
schemes might exhibit, including the earlier-referenced étale map.

De�nition 57. f : X Ñ Y a map of schemes is a�ne if, for all y in Y , there exists
some a�ne neighborhood U containing y such that f�1pUq � X is a�ne.

De�nition 58. f : X Ñ Y a map of schemes is �nite if, for all y in Y , there exists
some a�ne neighborhood U containing y such that f�1pUq � X a�ne, and the map
of rings OY pUq Ñ OXpf

�1pUqq gives OXpf
�1pUqq the structure of a �nite OY pUq-

module. (This is to say, if there exist �nitely many elements tr1, . . . , rnu such that
r1 � OY pUq � � � � � rn � OY pUq spans OXpf

�1pUqq).

De�nition 59. f : X Ñ Y a map of locally Noetherian schemes is étale if for all y
in Y and all x in f�1ptyuq, there exists some a�ne neighborhood U containing y and
a�ne V containing x such that V is contained within f�1pUq, and the map of rings
OY pUq Ñ OXpf

�1pUqq has the form OY pUq Ñ OY ppUqqrxs{  h ¡B, for
OY ppUqqrxs{  h ¡B

the localization of OY ppUqqrxs{  h ¡ at some prime ideal B and h a monic polynomial
such that h1 is invertible in OY ppUqqrxs{  h ¡.

De�nition 60. f : X Ñ Y a map of locally Noetherian schemes is �nite étale if f is
both a �nite map and an étale map. A scheme X equipped with a �nite étale map
onto scheme Y is called an étale covering of Y . Such a covering is denoted pX, fq,

X
f
Ñ Y , or simply X{Y .

From these de�nitions, it is true by inspection that all �nite morphisms (and
therefore all �nite étale morphisms) are a�ne.

Please note that the property of being locally Noetherian is so important in sim-
plifying our discussion of étale maps that, from this point forward, schemes may
be assumed to be locally Noetherian. For formal statements, we may include this
provision explicitly, but the assumption carries even when not stated.



38 CHAPTER 3. SCHEMES AND SHEAVES

There are, for each of these properties, equivalent de�nitions which are much
more useful, but these de�nitions are standard. However, as these equivalences are
nontrivial, we take it upon ourselves to show them here. First, however, we must
demonstrate the following particularly useful property of a�ne morphisms:

Lemma 3.3.6. Given an a�ne morphism of locally Noetherian schemes f : X Ñ Y
and an open a�ne subset U � Y , the restriction f |f�1pUq of f to f�1pUq is also a�ne.

Proof. f a�ne means that every point is included in some open a�ne Yα � Y such
that f�1pYαq is open a�ne in X. Take these tYαuαPA as an open a�ne cover of Y .
As the Yα's cover Y , the set tYα

�
UuαPA must be an open (not necessarily a�ne!)

cover of U . We now �x u P U . Then there exists α P A such that Yα
�
U contains u.

Suppose this Yα � SpecpRαq as an a�ne scheme. Then, because a�ne subsets form
a basis of Y , and designated open subsets (themselves a�ne open subsets) form the
basis of Yα, there must exist some designated open subset Uaα,u , aα,u P Rα, such that u
is contained within Uaα,u and Uaα,u is contained within the intersection Yα

�
U . Now,

f is, of course, topologically continuous, and we've already established that f�1pYαq
is a�ne in X, so the map f |f�1pYαq : f�1pYαq Ñ Yα is simply a morphism of a�ne
schemes.

We then examine f�1pUaα,uq � f�1pYαq. Consider ϕα : Rα Ñ OXpf
�1pYαqq, the

Ring homomorphism induced by the map f |f�1pYαq. Speci�cally, note that a prime
ideal p in OXpf

�1pYαqq contains ϕu if and only if the preimage ϕ�1
α ppq of that ideal

contains u. Thus, the designated open set Vα,ϕpuq of f
�1pYαqq is exactly the preimage

of Uaα,u under f , so f |f�1pUq is locally a�ne at u. And, since this is true without loss
of generality for all such u, we can say f |f�1pUq is a�ne. �

This is of particular importance in the following Theorem, also regarding a�ne
morphisms:

Theorem 3.3.7. A morphism of schemes f : X Ñ Y is a�ne if and only if for every
open a�ne U in Y , its preimage f�1pUq is open a�ne in X.

Proof. (Necessity): Let us begin with the case where Y is an a�ne scheme, and
generalize from there.

Let Y � SpecpRq be an a�ne scheme. f is a�ne, so there must exist an a�ne
cover tUαu of Y , with Uα � SpecpRαq, such that f�1pUαq, which we denote Vα, is
a�ne for all α. We now �x a point uα in Uα. Because distinguished open sets form
the basis of a�ne schemes, there is some section rα in R such that the distinguished
open set Ur contains uα and is contained within Uα. However, because Uα contains
Ur, we can associate Ur with the distinguished open set Ur1α of r1α, the restriction of
rα to Yα. Because we know Vα Ñ Uα a morphism of a�ne schemes, we know the
preimage of Ur1α is a distinguished open set of Vα, which is also a�ne.

We now consider an arbitrary global section q in R under the induced morphism
of rings f̂ : RÑ OXpXq. If f restricts to a unit of the stalk OY,y, then for every x in

the preimage of y under f , f̂pqq must restrict to a unit of the stalk OX,x. From this,
we can see that f�1pYrq contains Xf̂prq. From this, we see that Xhatfprαq is exactly

f�1pYrαq, or the preimage of Ur1α , which we have shown to be a�ne.
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Because Y is a�ne and therefore quasicompact, we can take the a�ne cover Ur1α
of Y to be �nite. This means that as no point in Y is not contained in the �nite
union of these sets, no prime ideal of R is not contained within the ideal generated
by rα, with rα restricting to rα1 , and so a linear combination of these trαu is equal to
1 in R. The image of this linear combination must also be 1 in OXpXq, and so the
�nite set tf̂prαqu generate the unit ideal in OXpXq, with Xf̂prαq

a�ne for all α in the
�nite cover. We therefore conclude by Theorem 3.3.4 that X is a�ne.

Expanding now to the general case, for f : X Ñ Y an a�ne map of schemes, we
simply take any open a�ne set U in Y , and we are given by Lemma 3.3.6 that the
map f : f�1pUq Ñ U is an a�ne morphism onto an a�ne set. From the above, we
then conclude f�1pUq to be a�ne. �

Theorem 3.3.8. A morphism of locally Noetherian schemes f : X Ñ Y is �nite if
and only if for every a�ne open subscheme U of Y , the preimage f�1pUq is an a�ne
subscheme of X and the induced mapping f̂ : OY pY q Ñ OXpXq gives OXpf

�1pUqq the
structure of a �nitely-generated OY pUq�module.

Proof. If f exhibits this property, then any a�ne cover of Y will satisfy the conditions
necessary to de�ne f as a �nite morphism. To show necessity, however, we �rst
assume that f is �nite and then take an a�ne cover tUαu of Y such that f�1pUqα,
which we denote as Vα, is a�ne and OXpVαq is given the structure of a �nitely-
generated OY pUαq�module. From here, we denote for convenience Uα � SpecpAαq,
Vα � SpecpBαq. We now consider an a�ne open subscheme of Uα. Uα and Vα are
quasicompact, as the spaces X and Y are locally Noetherian. We already know that
for aα in Aα and f̂α the induced homomorphism of rings Aα Ñ Bα, the distinguished
open set Vf̂αpaαq � f�1pUaαq. Then an element b in Bα can be written as bα �
ņ

i�1

f̂αpaα,iq � bα,i. As any element of Vf̂αpaαq can be written as b

f̂αpaαqN
for some N , we

can write that element as b

f̂αpaαqN
�

ņ

i�1

f̂αp
aα,i
aNα

q � bα,i.

We have now shown that every a�ne subset contains a small enough distinguished
open set surrounding any given point which satis�es this property. We now replace
for notational convenience the cumbersome double subscripts and reduce to the case
where f : X Ñ Y is a �nite map of a�ne schemes and seek to show that for X �
SpecpBq, Y � SpecpAq, f̂ gives B the structure of a �nitely-generated A�morphism.

We already know from f being �nite that there exist some distinguished open sets
Ua, Vf̂paq � f�1pUaq and some �nite list of m elements tbiu in B such that any element

of Br 1

f̂paq
], which we call b

f̂paqN
(with b in B) can be written as b

f̂paqN
�

m̧

i�1

bi

f̂paqni
�f̂paiq,

for tniu �xed. But then such a b can simply be written b �
m̧

i�1

bi � f̂pai � a
N�niq. To

avert the problem that might arise if some ni were greater than N , we note that for
arbitrarily large N , there exists some taiu which allow us to write b

f̂paqN
with this

linear combination, and thus, the problem disappears. �
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Theorem 3.3.9. For f : X Ñ Y a morphism of locally Noetherian a�ne schemes
such that X � SpecpAq and Y � SpecpBq and f has the property that the induced
map of rings pf : B Ñ A takes the form B Ñ Brxs{  h ¡, for h a monic polynomial
such that h1 is invertible in Brxs{  h ¡, then the restriction of f to any distinguished
open subset Ua Ñ fpUaq has this property as well.

Proof. We begin by noting that fpUaq � t pf�1ppαqu, where pα varies over all prime
ideals in A not containing a (excusing the abuse of notation which identi�es elements
of SpecpRq with their corresponding prime ideals in R). We let b be in B such thatpfpbq � a. Then a is in pα if and only if b is contained in the prime ideal pf�1ppαq, and
so fpUaq � Vb, the distinguished open subset of b in Y .

It remains, then, to show that in the induced mapBr1
b
s Ñ Brxs{  h ¡r 1

a
s, Brxs{  h ¡r 1

a
s

can be written as Br 1
b
srxs{  g ¡, for g a monic polynomial with g1 invertible in the target.

As b ÞÑ a, we can write Brxs{  h ¡r 1
a
s as Br 1

a
, xs{  h ¡ � Br 1

b
, xs{  h ¡, and the adjunction

of 1
a
does nothing to change the invertibility of h1, and so we can take g � h and we

are done. �

The following corollaries follow su�ciently directly from Theorem 3.3.9 that we
omit their proofs:

Corollary 3.3.10. For f : X Ñ Y an a�ne morphism of locally Noetherian a�ne
schemes such that X � SpecpAq and Y � SpecpBq and f has the property that the
induced map of rings pf : B Ñ A takes the form B Ñ Brxs{  h ¡, for h a monic polyno-
mial such that h1 is invertible in Brxs{  h ¡, then the restriction of f to f�1pVbq Ñ Vb
for Vb a distinguished open subset of B has this property as well.

Corollary 3.3.11. Given an étale morphism of locally Noetherian schemes f : X Ñ
Y , the restriction of f to U Ñ fpUq is also an étale morphism of locally Noetheriean
schemes, for U any open subscheme of X.



Chapter 4

The Étale Fundamental Group

4.1 Étale Coverings

4.1.1 Étale Coverings as a Category

De�nition 61. Suppose we �x a connected, locally Noetherian scheme pS,OSq (con-
nected in the sense that it cannot be decomposed into the disjoint union of two
nonempty open sets). Then there exists a Category of Étale Coverings of pS,OSq,
denoted Et{S, whose objects are schemes equipped with �nite étale maps onto S and
whose morphisms are morphisms of schemes which preserve the equipped étale map-
pings onto S.

De�nition 62. This is to say, a morphism of objects X
fXÑ S and Y

fYÑ S of Et{S is a
morphism of schemes g : X Ñ Y such that the following diagram commutes:

X

fX   

g // Y

fY
��
S

De�nition 63. An automorphism of an object X
f
Ñ S in ObpEt{Sq is a morphism of

objects X Ñ X which is invertible. The group of all automorphisms of the object

X
f
Ñ S is denoted AutpX{Sq or AutpXq.

Before proceeding further, there are a few results which will be very helpful to
us as we move onward, but whose proofs are made much less onerous (and shorter!)
by the use of alternative de�nitions for many of the properties of morphisms we
have examined. Rather than attempting to show equivalence of de�nitions or work-
ing around our limitations, we will simply state the results with reference to more
thorough resources for the curious reader:

Lemma 4.1.1. [Stacks], Lemmata 34.3 and 34.4: Finite étale morphisms are stable
under pullback.

41



42 CHAPTER 4. THE ÉTALE FUNDAMENTAL GROUP

Lemma 4.1.2. [SGAI], Proposition 3.1: For Y
f
Ñ S a �nite étale morphism of locally

noetherian schemes, the injection Y id�id
ÝÑ Y �S Y is an open and closed immersion.

We may now show the following, an analogue to Lemma 2.2.7:

Lemma 4.1.3. For pY
f
Ñ Sq an étale covering, any section s Ñ Y of f is an open

and closed immersion.

Proof. Using the lemmata above, this follows directly from Lemma 2.1.1, as in 2.2.7.
�

Lemma 4.1.4. Let pY
f
Ñ Sq and pX

g
Ñ Sq be étale coverings. Then any section

s : Y Ñ Y �S X is an open and closed immersion.

Proof. Using Lemma 4.1.1, we can simply invoke Lemma 4.1.3, and we are done. �

Keeping S �xed, we can examine the category Et{S and the properties it exhibits.

Theorem 4.1.5. The category Et{S exhibits the following properties:

1. S
1SÑ S is a terminal object of Et{S

2. pH, fHq constitutes an initial element of Et{S.

3. For any two objects pX
fXÑ Sq, pY

fYÑ Sq P ObpEt{Sq, pX > Y
fX>YÑ Sq is also an

element of ObpEt{Sq, with fX>Y de�ned in the obvious way.

4. The �ber product of �nitely many objects tpXi

fXiÑ Squ is again an object on Et{S.

5. A morphism of objects f : X Ñ Y in Et{S can be factored into a pair of mor-

phisms X
f1

� Y1
f2
ãÑ Y , where f1 is an e�ective epimorphism, f2 is a monomor-

phism, and both Y1 and Y2 are objects of Et{S for Y � Y1 > Y2.

Proof. 1. S
1SÑ S is trivially an étale covering, and as for any given X

fXÑ S, there
exists only one map f : X Ñ S such that 1S � f � fX (which is, of course, fX

itself), S
1SÑ S is a terminal object of Et{S

2. Likewise, there exists a trivial étale mapping fH : H Ñ S sending nothing

nowhere, and as such, H
fH
Ñ S P Ob(Et{S). But, as there is a unique morphism

fH,X : H Ñ H � X for any pX
fXÑ Sq P ObpEt{S) such that fH � fX � fH,X ,

degenerate though it may be, pH, fHq constitutes an initial element of Et{S.

3. As the properties specifying an étale mapping are local in both the source and
target schemes, this mapping is still étale. It remains �nite because the product
of any two �nitely-generated modules is also a �nitely-generated module, and
so by Lemma 3.2.4 and Theorem 3.3.8, the preimages of any a�ne cover of Y
exhibit the necessary properties.
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4. Because we only require that �nite �ber products exist, we may reduce to the

pairwise case. For objects pX
fXÑ Sq and pY

fYÑ Sq, we wish �rst to show that
X �

S
Y is well-de�ned as a scheme. It is certainly well-de�ned as a set, which

we must now overlay with a well-de�ned sheaf of rings. We ascribe to it a basis
of open sets given by f�1pUq �

U
g�1pUq

�
X �

S
Y for any a�ne subscheme U in

S, which we know to be a�ne by lemma 3.3.5. This provides both a topology
and a B-sheaf of rings, well-de�ning a sheaf. Because the tensor product is
again Noetherian, we have well-de�ned the �ber product as a locally Noetherian
scheme. The tensor product of two �nitely-generated modules is again �nitely
generated, and if the modules satisfy the étale property, then the tensor product
again takes the form OSpUqrxs{  h ¡, with h1 invertible in OSpUqrxs{  h ¡.

5. We �rst set Y1 to be the image of f in Y . We then consider the following
pullback:

Y

fY
��

Y �
S
Xp1

oo

p2

��
S X

fXoo

f�id

hh
f

bb

Because p2 � pf � idq � id on X, pf � idq is a section and therefore an open and
closed immersion. The projection map p1 is a closed map, and so the image
of f in Y is closed. We already know, however, that this image is Y1, an open
subscheme of Y , and so Y1 is open and closed in Y , making Y � Y1 > Y2, both
open subschemes, and therefore objects of Et{S by Theorem 3.3.8 and Corollary
3.3.11. As Y1 is the image of f , f is epimorphic onto Y1, and the inclusion of
Y1 into Y is clearly monomorphic.

�

De�nition 64. For S a connected locally Noetherian scheme, we de�ne the �ber
functor over a geometric point s in S to be the functor FEt{S,s: Et{S Ñ Set, which

associates to an étale covering X
f
Ñ S of S the set of geometric points in X with

value in the separable completion�Kpsq of Kpsq which map to s under f . (Or, more
simply, the set f�1psq.) We denote these associations by FEt{S,s: X ÞÑ FEt{S,spXq, and
g ÞÑ FEt{S,spgq, with FEt{S,spgq : FEt{S,spXq Ñ FEt{S,spY q for any morphism of objects
g : X Ñ Y , such that the following diagram commutes:

De�nition 65. A pointed object pX, xq of Et{S is an object X
f
Ñ S in ObpEt{Sq paired

with a point x in FEt{S,spXq for a speci�ed point s in S. Note that we may also

simply consider pX, xq the object X
f
Ñ S paired with a geometric point x in X,

which then speci�es the �ber we are to consider as f�1pfpxqq. Be aware that the
concept of a pointed object has a more precise and generalizable Category-Theoretic
de�nition, which in this case would emphasize the role of x as a morphism of schemes
Specp�Kpsqq Ñ X. Either emphasis is correct to be used as useful.
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De�nition 66. A morphism of pointed objects pX, xq Ñ pY, yq in ObpEt{Sq is simply
a morphism of objects X Ñ Y such that x ÞÑ y.

De�nition 67. An object X
f
Ñ S in ObpEt{Sq is called connected if it cannot be

decomposed into X1 > X2 for any pair of objects X1, X2 in ObpEt{Sq. We note that
as open subsets are open subschemes, connected objects are necessarily exactly those
connected in the topological sense as well.

Lemma 4.1.6. The �ber f�1psq of any étale covering pX
f
Ñ Sq over a point s in S

is a �nite set.

Proof. Suppose not. Then there exists some a�ne neighborhood U containing s
whose preimage consists of in�nitely many disjoint a�ne subschemes in S. This
in turn would mean that the ring associated to the preimage of this neighborhood
would be the product of in�nitely many �nitely-generated U�modules, which would
no longer be �nitely generated, rendering f not a �nite map. �

Lemma 4.1.7. If pX
f
Ñ Sq is a connected object of Et{S, then any element u of

HomEt{SpX,Xq (the set of morphisms of objects in Et{S from X to itself) is an auto-
morphism of X over S.

Proof. We have speci�ed both S and X to be connected. As X is connected and can
only be decomposed into X > H, by Theorem 4.1.5, we know that u is an e�ective
epimorphism, and so the morphism of �bers (sets) FEt{S,spuq : FEt{S,spXq Ñ FEt{S,spXq
is a surjective map from a �nite set to itself, which must therefore be bijective. As this
is true for all s in S, we conclude that u is bijective and therefore an automorphism.

�

Lemma 4.1.8. Let pX, xq, pY, yq be a pair of pointed objects in Et{S with X connected.
Then if there exists a morphism of pointed objects u : pX, xq Ñ pY, yq, it is unique.

Proof. By Theorem 4.1.5, if X is connected, the image of u is epimorphic onto a
single connected component of Y , and so we can reduce to the case in which both X
and Y are connected objects, where we take Y to be the connected component of the
target containing y. Let u, u1 be two morphisms pX, xq Ñ pY, yq. We now examine
the following pullback:

Y

fY
��

Y �
S
Yp1

oo

p2

��
S Y

fYoo

id�id

hh

As before, p2 � pid � idq � id on Y , and is therefore an open and closed immersion.
We use this fact in the following pullback diagram:

Y

id�id

��

Y �
Y�
S
Y
Xp1

oo

p2

��
Y �

S
Y X

u�u1oo
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As open and closed immersions are preserved by pullback, p2 is also an open and
closed immersion. As Y �

Y�
S
Y
X amounts to the points x1 such that upx1q � u1px1q, and

X is connected, we have that if u and u1 agree on any point x1 in x, then they are
equal across all of X and therefore equal exactly. �

Corollary 4.1.9. For pX
f
Ñ Sq a connected object of Et{S, the automorphism group

AutpX{Sq acts freely on the �ber FEt{S,spXq and is �nite.

Proof. For x, x1 elements of FEt{S,spXq, there exists at most one morphism between
the pointed objects pX, xq Ñ pX, x1q. For x � x1, we get that only the identity in
AutpX{Sq �xes any element x, making the action free. Only a �nite group can act
freely on a �nite set, and so we are done. �

Within the category Et{S, there are objects whose properties and relevance to the
construction of a fundamental group bear direct analogy to Galois �eld extensions.
Much as in the topological case, we call these Galois objects by way of analogy.

De�nition 68. An object pX
f
Ñ Sq of Et{S is called a Galois object if it is connected

and AutpX{Sq acts transitively on the �ber FEt{S,spXq for every s in S.

We note that this property, along with a speci�ed point x in each �ber of X over
S, speci�es an isomorphism of AutpX{Sq�sets between each �ber and AutpX{Sq itself.

Lemma 4.1.10. An object pX
f
Ñ Sq of Et{S is Galois if and only if the �ber product

X �
S
X is isomorphic to the disjoint union of a set of copies of X.

Proof. We begin by designating the size of the �ber in X over each s in S as n. It
then follows that the size of the �ber in X �S S over each s in S is n2. We then
examine the following pullback:

γX

fX
��

id�γ

��
X �S X

p2oo

p1

��
S γ1X,

fXoo

γ1�γ�1
dd

γ1�id

hh

where γ and γ1 are automorphisms in AutpX{Sq
We now note that p1 � pγ

1 � idq � id on X, as does p2 � pid � γq, meaning
that both of these are sections and therefore open and closed immersions. Because
p2 � pγ

1 � idq � γ1, an automorphism, we then see that any automorphism factors
through X �S X in this way, with X mapping surjectively onto an open and closed
component of X �S X under pγ1 � idq, and so the image of X under pγ1 � idq is
isomorphic to X. However, any subset of X �S X isomorphic to X must necessarily
come equipped with an isomorphism from X, and likewise, from γX, and so such a

map must necessarily be able to be put as X
pγ1,γq
ÝÑ X �S X.
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If X is a Galois object, there exist n2 such pairings pγ1, γq, and so such isomor-
phisms cover all of X �S X. If not, then by Lemmata 4.1.7 and 4.1.8, fewer than
n automorphisms of X exist and such isomorphisms cannot cover all of X �S X.
Therefore, the condition is both necessary and su�cient. �

Lemma 4.1.11. For pX
fXÑ Sq, pY

fYÑ Sq, and pZ
fZÑ Sq connected objects of Et{S,

with Y Galois, then for any two morphisms of objects g1, g2 : X Ñ Y , there exists
a unique element ϕ of AutpY{Sq such that g2 � ϕ � g1, and for any two morphisms
of objects h1, h2 : Y Ñ Z, there exists a unique element ς of AutpY{Sq such that
h2 � h1 � ς.

Proof. We �rst designate x in X and y, y1 in Y such that fXpxq � s, g1pxq � y,
and g2pxq � y1. Then, because Y is Galois, there exists some unique ϕ such that
ϕpyq � y1. Then ϕ � g1 is a morphism of pointed objects pX, xq Ñ pY, y1q, as is g2. By
Lemma 4.1.8, they must be the same.

Lemma 4.1.8 tells us that if there exists an automorphism ς in AutpY{Sq such
that h2 � h1 � ς, it is unique. We know from Theorem 4.1.5 that h1 and h2 are
epimorphisms, so for a given z in the image of h1 in Z, there exist some y, y1 such
that h1py

1q � h2pyq � z. Then, we know there exists a unique automorphism ς
sending y to y1, and so h1 � ς is a morphism sending y to h2pyq, which must uniquely
be h2. �

This shows that if a morphism between Y Ñ Z as given above exists, the auto-
morphisms of Y uniquely determine those of Z, as in the Galois case in Topology or
Galois Theory. However, the construction of the étale fundamental group relies on

the existence of a system of Galois objects which so surject over every object pZ
fZÑ Sq

in Et{S. Such a system must always exist, but its existence is not obvious.

De�nition 69. A Galois closure of a connected object pX
fXÑ Sq in Et{S is a Galois

object pY
fYÑ Sq together with a morphism of objects g : Y Ñ X such that for every

Galois object pZ
fZÑ Sq with a morphism h : Z Ñ X, h factors through Y .

Theorem 4.1.12. Any connected object pZ
fZÑ Sq in Et{S has a Galois closure pX

fXÑ
Sq, unique up to isomorphism.

Proof. This proof is reproduced and expanded upon from [Mézard], wherein it is
Lemma 2.10. Suppose the �ber in X over some point s in S is f�1

X psq � tx1, . . . , xnu.
Then we consider the �ber product over S of n copies of X, X1 �

S
� � � �

S
Xn, which

we denote Xn (This is not the same as X1 � � � � � Xn!). Speci�cally, we consider
the connected component containing the ordered n�tuple px1, . . . , xnq, which we will
for convenience denote ξ. We call this component Y , and claim that it satis�es all
criteria to be the Galois closure over X.

We �rst show it is Galois. Let us denote for every i, j in t1, . . . , nu the function
pi,j : Xn Ñ X �

S
X to be the projection in the ith and jth onto X �

S
X. We denote

∆1 to be the diagonal of X �
S
X, and de�ne ∆ �

¤
i,jPt1,...,nu,i j

p�1
i,j p∆

1q. Because Y is
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connected, unless Y
�

∆ � H, Y must be contained entirely within ∆. But as no
two coordinates of ξ project to the same point, pi,jpξq is not in ∆1 for any i, j, so
Y
�

∆ � H.
Thus, every element of Y has distinct coordinates, and so we can write any element

of the �ber over s in Y as η � pxj1 , . . . , xjnq. As there exists a unique σ element of
Sn (the permutation group on n letters) sending p1, . . . , nq to pσp1q, . . . , σpnqq �
pj1 . . . , jnq, we can identify any element of AutpY{Sq with a corresponding element in
Sn, making AutpY{Sq isomorphic to some subset of Sn. As any morphism ω : Y Ñ X
must be epimorphic with X connected, we �nd that FEt{S,spωq is a surjection of sets,
and so for every i, there exists some element η � pxσp1q, . . . , xσpnqq in FEt{S,spY q (for
some permutation σ). We may now consider the action of the permutation σ on Xn,
wherein the symmetry of Xn in coordinates makes σ clearly an automorphism, and
speci�cally, the action of σ on Y as a subset of Xn. Because Y is connected, the
image σpY q must be connected, and as η is in FEt{S,spσpY qq as well as in FEt{S,spY q,
the two sets must coincide entirely, and therefore σ is an automorphism of Y . But
as this argument applies to any η in FEt{S,spY q, ξ is in the same orbit as every other
element, and so the action of AutpY{Sq is transitive. Thus, Y is Galois, and we have
already demonstrated it has an epimorphism onto X.

What remains to be shown are the factoring property and uniqueness. We now

let pZ
fZÑ Sq be another Galois object with Z

v
Ñ X a morphism onto X (necessarily

an epimorphism because X is connected). Because this is epimorphic, we know
there exist for all i some ηi in FEt{S,spXq such that the induced map FEt{S,spvq :
FEt{S,spZq Ñ FEt{S,spXq sends ηi to xi. By Lemma 4.1.11, we know there exists some
unique automorphism %i in AutpZ{Sq such that FEt{S,sp%iqpη1q � ηi.

We now construct γ �
n¹
i�1

v � %i : Z Ñ Xn. Now, γpη1q � ξ in Y , so we know the

image of γ is Y . Moreover, we see that any map Z Ñ X is the composition of p1 � v
with an automorphism, which makes it factor through Y by Lemma 4.1.11.

The application of this property to any other Galois closure of X yields uniqueness
up to isomorphism directly. �

Lemma 4.1.13. For any object X
fXÑ S of Et{Sq and any two points s, s1 in X, the

�bers f�1psq and f�1ps1q have the same number of elements, and are isomorphic as
AutpX{Sq�sets.

Proof. Because any object of Et{S is the disjoint union of connected objects, we can
take X to be connected. We then consider f : P Ñ X to be a map from P , the
Galois closure of X. As every morphism P Ñ P is an automorphism over S, the
automorphisms of P over X are exactly those automorphisms of P over S which
preserve the �bers of X. As AutpP{Sq acts freely and transitively on the �bers over
s in P , every �ber f�1

P psq is the same size, and AutpP{Sq acts transitively on f�1
P pSq

and therefore f�1pxq. Granted, some elements of AutpP{Sq may (so far as we know at
this point), send an element of f�1pxq to a di�erent �ber. We still know, though, that
some subgroup of AutpP{Sq acts transitively on f�1pxq. However, by Lemma 4.1.11,
we can describe any element of AutpX{Sq by a subgroup of AutpP{Sq, and AutpX{Sq
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itself therefore as a subgroup of AutpP{Sq. Since AutpX{Sq acts freely on the �ber
f�1
X psq each action on f�1pxq has the same stabilizer conjugacy class, and therefore,
the sizes of f�1pxq are the same, so the sizes of each f�1

X psq must be the same also,
with that action and the choice of a point in each �ber forcing an isomorphism of
AutpX{Sq�sets between them. �

4.2 The Étale Fundamental Group

With all the pieces in place, we may �nally de�ne the étale fundamental group.

De�nition 70. The étale fundamental group π1pS, sq at a geometric point s of a
connected, locally Noetherian scheme S is the group of automorphisms of the �ber
functor FEt{S,s : Et{S Ñ Set, acting on the right. This is to say, π1pS, sq is the group of
natural transformations from the �ber functor FEt{S,s to itself. An element of π1pS, sq
is a collection of automorphisms tφXu, with φX in AutpFEt{S,spX{Sqq for all objects X
of Et{S, which commute with pointed maps of covering spaces.

Theorem 4.2.1. Let tPiu be a collection of Galois objects of Et{S such that for all
connected objects X in Et{S, there exists some epimorphism Pi Ñ X for some i (in
which case, we say Pi trivializes X and tPiu is a co�nal system of Galois objects).
Then for any s in S, π1pS, sq � limÐÝ

i

AutpPi{Sq. In particular, this is true when tPiu

ranges over all Galois objects.

Proof. We begin by noting that Theorem 4.1.12 guarantees the existence of such a
system. We then note that by Lemma 4.1.11, if P is a Galois object which trivializes
an object of X, then any automorphism of X is completely determined by a (not
generally unique) automorphism of P . Thus, any collection tφXu of automorphisms
which commute with FEt{S,s is uniquely determined by the subcollection tφPiu. We
can then identify π1pS, sq as the group of collections of automorphisms tPiu which
commute with pointed maps between them. But because the objects of tPiu also
trivialize other Pi, we are given a collection of surjective homomorphisms of groups
AutpPi{Sq Ñ AutpPj{Sq supplied by the existence of a morphism Pi Ñ Pj. Therefore,

π1pS, sq is the set of elements of
¹
i

AutpPi{Sq which commute with the homomor-

phisms given, which is the de�nition of limÐÝ
i

AutpPi{Sq. �

This construction shows π1pS, sq to be a pro�nite group, equal to its own pro�nite
completion. The reader may note the similarity between the construction of π1pS, sq
and the groups AutpFfinX q in the topological case and GalpΩ{Fq, the absolute Galois
group of a �eld F. To fully establish this similarity, however, we will need to establish
a few more properties of π1pS, sq.

Corollary 4.2.2. For P a Galois object of Et{S, AutpP{Sq is a �nite quotient group
of π1pS, sq.
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Proof. We can use the system of all Galois objects as the co�nal system described
in Theorem 4.2.1. This construction gives π1pS, sq the structure of a pro�nite group,
constructed out of a system including AutpP{Sq, and therefore AutpP{Sq is a �nite
quotient of π1pS, sq. �

Lemma 4.2.3. An object X
fXÑ S of Et{S is connected if and only if π1pS, sq acts on

FEt{S,spXq transitively.

Proof. As above, for P the Galois closure of a connected X, AutpP{Sq acts transitively
on FEt{S,spXq, and by construction, π1pS, sq contains AutpP{Sq as a �nite quotient
group. Now, we assume X � X1 > X2 is not connected, but X1 and X2 are. Then
the action of π1pS, sq is mediated through the automorphism groups AutpP1{Sq and
AutpP2{Sq of objects P1 and P2, the respective Galois closures of X1 and X2. (As X is
disconnected, it cannot have a Galois closure, as the image of a connected component
under morphism must be another connected component). Thus, π1pS, sq acts by
AutpP1{Sq � AutpP2{Sq, which does not transpose elements of X1 with those of X2.
Thus, the action is not transitive.

Finally, any disconnected X, X � X1 >X2 >X
1, with X1 and X2 connected and

X 1 some other object. Thus, the proof holds for the general disconnected X. �

Lemma 4.2.4. For a connected, nonempty object X
fXÑ S of Et{S and N C π1pS, sq

the kernel of the action of π1pS, sq on FEt{S,spXq, X is Galois if and only if π1pS, sq{N
acts freely and transitively on X.

Proof. By Corollary 4.2.2, we can see that if X is Galois, AutpP{Sq is a �nite quotient
group of π1pS, sq. As an element of π1pS, sq is simply a collection of automorphisms,
and AutpP{Sq � π1pS, sq{N, for N some normal subgroup of π1pS, sq, we can see that
N consists exactly of those elements of π1pS, sq for which ϕX is the identity. This
necessarily equates N with the kernel of the action on FEt{S,spXq. As AutpP{Sq acts
freely and transitively, we are done.

We now take X to be not Galois, and consider the action of π1pS, sq{N. As X is
connected, we know it must act transitively. If it acts freely, then there is a set of
automorphisms of the Galois closure P of X which acts freely and transitively on
FEt{S,spXq. If the action is free, then each must restrict to a di�erent automorphism
of X, and so the action of AutpX{Sq on FEt{S,spXq must also be free and transitive,
which contradicts our assumption that X was not Galois, and so we are done. �

The following corollary is an immediate consequence:

Corollary 4.2.5. For X
fXÑ S a nonempty Galois object of Et{S, AutpX{Sq � π1pS, sq{N,

for N the kernel of the action of π1pS, sq on X, equivalent to taking N the stabilizer
of any element of FEt{S,spXq.

Lemma 4.2.6. For X
fXÑ S and Y

fYÑ S objects of Et{S, morphisms of objects X Ñ Y
bijectively correspond to morphisms of π1pS, sq�sets between FEt{S,spXq Ñ FEt{S,spY q.
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Proof. Any morphism X Ñ Y must send every x in X to some y in Y , and because
the morphism must commute with the maps onto S, fXpxq � fY pyq � s. And
because elements of π1pS, sq must commute with such morphisms, the structure of the
π1pS, sq�sets is preserved. Thus, any morphism X Ñ Y clearly induces a morphism
of π1pS, sq�sets FEt{S,spXq Ñ FEt{S,spY q.

Because every morphism q can be broken down into its mapping from each con-
nected component of X to some connected component of Y , we may reduce to
the case where X and Y are connected, wherein FEt{S,spXq and FEt{S,spY q each be-
come a single π1pS, sq�orbit. We now suppose we have a morphism of π1pS, sq�sets
q : FEt{S,spXq Ñ FEt{S,spY q. By Lemma 4.1.8, we know that if any morphism of ob-
jects of Et{S rq : X Ñ Y induces q, it is unique. We now need only show that for every
such rq, some such q induces it. Such a morphism of π1pS, sq�sets is, by de�nition, a
function rq such that rqpg � xq � g � rqpxq, for all g in π1pS, sq and all x in FEt{S,spXq.

Now, for a Galois object to trivialize an object, we need only know that the kernel
of the π1pS, sq�action on that object contains the kernel of the π1pS, sq�action on
the Galois object. In order for there to exist such a morphism q, mapping x to y, the
stabilizer of each x must be contained within the stabilizer of its image qpxq. This
means that for P the Galois closure of X, P also trivializes Y . This trivialization
means that there exist points p, p1 and maps ρX : P Ñ X and ρY : P Ñ Y such
that ρX : p ÞÑ x and ρY : p ÞÑ y, as well as an automorphism γ sending p to p1.
That the stabilizer of x is contained within the stabilizer of y means that any element
of ρ�1

Y pyq is contained within γpρ�1
X pxqq, and so there is a well-de�ned map sending

x to ρY pγpρ
�1
X pxqqq which commutes with the mappings onto S, and is therefore a

morphism of objects. �

We now venture beyond the scope of this paper for a moment to list a few prop-
erties of the étale fundamental group important to its further study, deferring to
[Mézard], section 2.15 for further discussion. The �rst is that, while we can think
of π1pS, sq as the projective limit of the automorphism groups of a system of Galois
objects, so constructing it as a group out of groups, we can also think of it as the
automorphism group of the projective limit of that same system. This is to say as
follows:

Theorem 4.2.7. For tPiu a co�nal system of Galois objects of Et{S partially ordered
by the existence of a morphism of objects Pi Ñ Pj, there exists a scheme P � limÐÝ

i

Pi,

unique independent of choice of tPiu, equipped with a map fP : P Ñ S and a map
fα : P Ñ Xα for every object Xα of Et{S which commutes with all morphisms of
objects and all covering maps onto S. The �ber functor acts on this scheme P such
that FEt{S,spP q � limÐÝ

i

pFEt{S,spPiq. The group of automorphisms of P over S is exactly

π1pS, sq.

It is worth pointing out that P is very rarely an object of Et{S, as the morphism
onto S is not generally �nite.

The next result establishes a relationship between �ber functors over di�erent
geometric points, justifying the association of the étale fundamental group to a space,
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rather than a single point.

Theorem 4.2.8. For a connected, locally Noetherian scheme S containing distinct
geometric points s and s1, there is an isomorphism de�ned up to inner automorphism
between π1pS, sq � π1pS, s

1q.

The �nal outside theorem solidi�es the relationship between πtop1 pX, xq and π1pS, sq
beyond analogy. It requires one de�nition, however.

De�nition 71. A morphism of schemes f : X Ñ Y is called of �nite type if for
every point y in Y , there exists an a�ne open neighborhood Ui of Y containing y
such that there exists a �nite a�ne cover tVi,ju of f

�1pUiq where the restriction of
f to Vi,j Ñ Ui induces a map of rings OY pUiq Ñ OXpVi,jq which gives OXpVi,jq the
structure of a �nitely-generated OY pUiq�algebra. In this case, we say X is of �nite
type over Y .

Theorem 4.2.9. (Riemann Existence Theorem): Let X be a scheme of �nite type
over C. There is an equivalence of categories between �nite étale coverings of X and
�nite topological coverings of XpCq.

While the proof of this supposition is beyond our scope, we recognize its ele-
gance and importance, and so direct the curious reader to [Hartshorne], wherein it is
discussed in Theorems 3.1 and 3.2.

The following corollary follows directly from the equivalence of categories (and
that it induces an equivalence of automorphism groups) and Theorem 2.2.2.

Corollary 4.2.10. For X as above, for any x in X and for any c in XpCq,
π1pX, xq �

{πtop1 pXpCq, cq.

4.3 Computation of an Étale Fundamental Group

As we have just solidi�ed the connection between �nite topological coverings, étale
coverings, and the fundamental groups of each, it now falls to us to connect our
discussion of Galois Theory beyond mere analogy. As such, we now take it upon
ourselves to compute the étale fundamental group of the scheme SpecpKq, where K is
a �eld.

We begin with a discussion of étale coverings of K. To begin, we know from
Theorem 3.3.1 that, as SpecpKq is a�ne, maps from another scheme pX,OXq will be
in bijective correspondence to homomorphisms of rings K Ñ OXpXq. We know that
all étale coverings are a�ne morphisms, and as such, Theorem 3.3.7 tells us that all
étale coverings of an a�ne scheme must have a source scheme that is a�ne also. If we
take X to be nonempty, we know that K must be isomorphic to its image in OXpXq.
We know from Theorem 3.3.8 that X must have a covering by open a�nes Uα such
that OXpUαq must be a �nite K�module. We may now quote the Galois Theory result
Lemma 2.3.3 to see that each of these Uα must be isomorphic to Krαs, for some α
algebraic over K. As each such Uα would then have to consist of a single point, we
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see that any two Uα cannot be glued together along an open subset without being
completely identi�ed together, and so X must be the disjoint union of �nitely many
such SpecpKrαsq. This gives us the following lemma:

Lemma 4.3.1. X
fXÑ SpecpKq is a connected étale covering if and only if Y �

SpecpLq, and fY is induced by an injection K ãÑ L, a �nite separable extension
of K.

We now consider automorphisms of an object X
fXÑ SpecpKq, where X � SpecpLq.

As a map X Ñ X is a morphism of a�ne schemes, we see that it must be associated
uniquely to a map L ãÑ L, and as it must commute with the map fX , it must preserve
the injection K ãÑ L. Such a map is exactly an automorphism of L over K, and so we
get the following:

Lemma 4.3.2. For SpecpLq Ñ SpecpKq an étale covering, the groups AutpSpecpLq{SpecpKqq
and GalpL{Kq are isomorphic.

Finally, we examine the �ber over a geometric point k in SpecpKq in a connected
object SpecpLq Ñ SpecpKq, which is simply an injection L Ñ Ω which preserves
the image of K speci�ed by the geometric point k. The Primitive Element Theorem
tells us that such an injection is uniquely determined by the image of its primitive
element, which we may call αL. As αL is algebraic over K, we know that it has exactly
n conjugate roots in Ω, and so the �ber over k has n elements. We then know that
SpecpLq Ñ SpecpKq is a Galois object of Et{SpecpKq if and only if AutpSpecpLq{SpecpKqq has
exactly n elements, which we can say from Lemma 4.3.2, if and only if GalpL{Kq has
exactly n elements. But this only occurs when the extension L � K is Galois:

Lemma 4.3.3. For K a �eld, the Galois objects of SpecpKq are exactly those elements

SpecpLq
fLÑ SpecKq, where fL corresponds to a Galois extension K ãÑ L.

We are therefore, in this instance at least, well justi�ed in referring to Galois
objects as such. Now we may show the following:

Theorem 4.3.4. For K a �eld and k a geometric point of SpecpKq, π1pSpecpKq, kq
is isomorphic to the absolute Galois group of K.

Proof. From here, we may use Theorem4.2.1 to assemble π1pSpecpKq, kq:
π1pSpecpKq, kq � limÐÝ

i

AutpPi{SpecpKqq, for Pi a Galois object of Et{SpecpKq

� limÐÝ
i

AutpSpecpLiq{SpecpKqq, for Li varying over all Galois extension of K

� limÐÝ
i

GalpLi{Kq

� GalpΩ{Kq, for Ω the separable closure of K. �

We note that this is the absolute Galois group of K, and that both this result
and Lemmata 4.3.1 and 4.3.2 justify the notion of �eld extensions as coverings of
a �eld. We may also note that SpecΩ necessarily matches the construction of the
object described in Theorem 4.2.7, and that this serves to ascribe to Ω a similar role
in Galois Theory as the universal covering plays in topological covering spaces.
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