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1. Introduction

Let X be a connected scheme. One of the basic arithmetic invariants that one can extract from X is the
étale fundamental group m (X, T) relative to a “basepoint” T — X (where T is the spectrum of a separably
closed field). The fundamental group was defined by Grothendieck [Gro03] in terms of the category of finite,
étale covers of X. It provides an analog of the usual fundamental group of a topological space (or rather, its
profinite completion), and plays an important role in algebraic geometry and number theory, as a precursor
to the theory of étale cohomology. From a categorical point of view, it unifies the classical Galois theory of
fields and covering space theory via a single framework.

In this paper, we will define an analog of the étale fundamental group, and construct a form of the Galois
correspondence, in stable homotopy theory. For example, while the classical theory of [Gro03] enables one
to define the fundamental (or Galois) group of a commutative ring, we will define the fundamental group of
the homotopy-theoretic analog: an E..-ring spectrum.

The idea of a type of Galois theory applicable to structured ring spectra begins with Rognes’s work in
[Rog08], where, for a finite group G, the notion of a G-Galois extension of Ey-ring spectra A — B was
introduced (and more generally, E-local G-Galois extensions for a spectrum FE). Rognes’s definition is an
analog of the notion of a finite G-torsor of commutative rings in the setting of “brave new” algebra, and it
includes many highly non-algebraic examples in stable homotopy theory. For instance, the “complexification”
map KO — KU from real to complex K-theory is a fundamental example of a Z/2-Galois extension. This
was taken further by Hess in [Hes09], which discusses the more general theory of Hopf-Galois extensions,
intended as a topological version of the idea of a torsor over a group scheme in algebraic geometry.

In this paper, we will take the setup of an axiomatic stable homotopy theory. For us, this will mean:

Definition 1.1. An axiomatic stable homotopy theory is a presentable, symmetric monoidal stable
oo-category (C,®,1) where the tensor product commutes with all colimits.

An axiomatic stable homotopy theory defines, at the level of homotopy categories, a tensor triangulated
category. Such axiomatic stable homotopy theories arise not only from stable homotopy theory itself, but
also from representation theory and algebra, and we will discuss many examples below. We will associate,
to every axiomatic stable homotopy theory C, a profinite group (or, in general, groupoid) which we call the
Galois group m1(C). In order to do this, we will give a definition of a finite cover generalizing the notion of
a Galois extension, and, using heavily ideas from descent theory, show that these can naturally be arranged
into a Galois category in the sense of Grothendieck. We will actually define two flavors of the fundamental
group, one of which depends only on the structure of the dualizable objects in C and is appropriate to the
study of “small” symmetric monoidal co-categories.

Our thesis is that the Galois group of a stable homotopy theory is a natural invariant that one can
attach to it; some of the (better studied) others include the algebraic K-theory (of the compact objects,
say), the lattice of thick subcategories, and the Picard group. We will discuss several examples. The classical
fundamental group in algebraic geometry can be recovered as the Galois group of the derived category of
quasi-coherent sheaves. Rognes’s Galois theory (or rather, faithful Galois theory) is the case of C = Mod(R)
for R an E-algebra.

Given a stable homotopy theory (C,®,1), the collection of all homotopy classes of maps 1 — 1 is
naturally a commutative ring Re under composition. In general, there is always a surjection of profinite
groups

(1) m1C — 75Specmo Re.

The étale fundamental group of SpecR¢ represents the “algebraic” part of the Galois theory of C. For
example, if C = Mod(R) for R an E.-algebra, then the “algebraic” part of the Galois theory of C corresponds
to those E,-algebras under R which are finite étale at the level of homotopy groups. It is an insight of Rognes
that, in general, the Galois group contains a topological component as well: the map is generally not
an isomorphism. The remaining Galois extensions (which behave much differently on the level of homotopy
groups) can be quite useful computationally.

In the rest of the paper, we will describe several computations of these Galois groups in various settings.
Our basic tool is the following result, which is a refinement of (a natural generalization of) the main result
of [BROS].
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Theorem 1.2. If R is an even periodic Eo-ring with moR regular noetherian, then the Galois group of R
is that of the discrete ring moR: that is, is an isomorphism.

Using various techniques of descent theory, and a version of van Kampen’s theorem, we are able to
compute Galois groups in several other examples of stable homotopy theories “built” from Mod(R) where R
is an even periodic Eo.-ring; these include in particular many arising from both chromatic stable homotopy
theory and modular representation theory. In particular, we prove the following three theorems.

Theorem 1.3. The Galois group of the co-category Ly (»)Sp of K(n)-local spectra is the extended Morava
stabilizer group.

Theorem 1.4. The Galois group of the Eo-algebra TMF of (periodic) topological modular forms is trivial.

Theorem 1.5. There is an effective procedure to describe the Galois group of the stable module co-category
of a finite group.

These results suggest a number of other settings in which the computation of Galois groups may be
feasible, for example, in stable module co-categories for finite group schemes. We hope that these results
and ideas will, in addition, shed light on some of the other invariants of E..-ring spectra and stable homotopy
theories.

Acknowledgments. I would like to thank heartily Mike Hopkins for his advice and support over the
past few years. His ideas have shaped this project, and I am grateful for the generosity with which he has
shared them. In addition, I would like to thank Gijs Heuts, Tyler Lawson, Jacob Lurie, Lennart Meier, Niko
Naumann, and Vesna Stojanoska for numerous helpful discussions.

Finally, I would like to thank my friends and family for their love and support. This thesis would not
have been possible without them.

2. Axiomatic stable homotopy theory

As mentioned earlier, the goal of this paper is to extract a Galois group(oid) from a stable homotopy
theory. Once again, we restate the definition.

Definition 2.1. A stable homotopy theory is a presentable, symmetric monoidal stable oo-category
(C,®,1) where the tensor product commutes with all colimits.

In this section, intended mostly as background, we will describe several general features of the setting
of stable homotopy theories. We will discuss a number of examples, and then construct a basic class of
commmutative algebra objects in any such C (the so-called “étale algebras”) whose associated corepresentable
functors can be described very easily. The homotopy categories of stable homotopy theories, which acquire
both a tensor structure and a compatible triangulated structure, have been described at length in the memoir
[HPS97].

2.1. Stable co-categories. Let C be a stable co-category in the sense of [Lurl2]. Recall that stability
is a condition on an oo-category, rather than extra data, in the same manner that, in ordinary category
theory, being an abelian category is a property. The homotopy category of a stable co-category is canonically
triangulated, so that stable co-categories may be viewed as enhancements of triangulated categories; however,
as opposed to traditional DG-enhancements, stable co-categories can be used to model phenomena in stable
homotopy theory (such as the oo-category of spectra, or the co-category of modules over a structured ring
spectrum).

Here we will describe some general features of stable co-categories, and in particular the constructions

one can perform with them. Most of this is folklore (in the setting of triangulated or DG-categories) or in
[Luri2].

Definition 2.2. Let Caty, be the co-category of co-categories. Given oco-categories C, D, the mapping space
Homc,s, (C, D) is the maximal oo-groupoid contained in the co-category Fun(C, D) of functors C — D.

Definition 2.3. We define an co-category Catl of (small) stable co-categories where:
4



(1) The objects of Cat® are the stable co-categories which are idempotent completeﬂ

(2) Given C,D € Cat, the mapping space Homgyest (C, D) is a union of connected components in
Homgcat  (C, D) spanned by those functors which preserve finite limits (or, equivalently, colimits).
Such functors are called exact.

The oo-category CatsotO has all limits, and limits can be computed as they would have been in Cat,,. For
example, given a diagram in Catf:;

c ,
lF
p—Ys¢

we can form a pullback C x¢ D consisting of triples (X,Y, f) where X € C,Y € D, and f: F(X) ~ G(Y) is
an equivalence. This pullback is automatically stable.

Although the construction is more complicated, Cat®' is also cocomplete. For example, the colimit (in
Caty,) of a filtered diagram of stable oo-categories and exact functors is automatically stable, so that the
inclusion Catf; C Catyo preserves filtered colimits. In general, one has:

Proposition 2.4. Catso'i> is a presentable oo-category.

To understand this, it is convenient to work with the (big) oo-category Pr’.

Definition 2.5 ([Lur09, 5.5.3]). Pr” is the co-category of presentable co-categories and colimit-preserving
(or left adjoint) functors.

The oo-category Pr’ is known to have all colimits. We briefly review this here. Given a diagram
F: I — Pr¥, we can form the dual I°P-indexed diagram in the co-category Pr’ of presentable co-categories
and right adjoints between them. Now we can form a limit in Pr' at the level of underlying co-categories;
by duality between Pr’, Pr® in the form Prf ~ (PrR)Op, this can be identified with the colimit @I F in
prl.

In other words, for each map f: ¢ — ¢/ in I, consider the induced adjunction of co-categories Ly, R;: F'(i) =
F(i'). Then an object x in lim  F' is the data of:

(1) For each i € I, an object x; € F(i).
(2) For each f: 4 — 4, an isomorphism x; >~ Ry(xy ).
(3) Higher homotopies and coherences.

For each i, we get a natural functor in Pr’, F (1) = 1 . F. We have a tautological description of the
right adjoint, which to an object x in ligI F as above returns x; € F(i).

Example 2.6. Let S, be the oo-category of pointed spaces and pointed maps between them. We have an
endofunctor ¥: S, — S, given by suspension, whose right adjoint is the loop functor Q: S, — S.. The
filtered colimit in Pr” of the diagram

) 3
S, =S8, = ...,

can be identified, by this description, as the co-category of sequences of pointed spaces (Xo, X1, Xo,...,)
together with equivalences X,, ~ QX,, 1, for n > 0: in other words, one recovers the co-category of spectra.

Proposition 2.7. Suppose F: I — Pr” isa diagram where, for each i € I, the oco-category F(i) is compactly
generated; and where, for each i — i’, the left adjoint F (i) — F(i') preserves compact objectsﬂ Then each
F(i) — @I F preserves compact objects, and ligl[ F is compactly generated.

PrOOF. It follows from the explicit description of ligj F, in fact, that the right adjoints to F(i) — li_r}nl F
preserve filtered colimits; this is dual to the statement that the left adjoints preserve compact objects.
Moreover, the images of each compact object in each F'(7) in hﬂ s F can be taken as compact generators,
since they are seen to detect equivalences. O

IThis can be removed, but will be assumed for convenience.
2This is equivalent to the condition that the right adjoints preserve filtered colimits.
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Definition 2.8. Pr“ is the co-category of compactly generated, presentable oo-categories and colimit-
preserving functors which preserve compact objects.

It is fundamental that Pr“ is equivalent to the oo-category of idempotent-complete, finitely cocomplete
oo-categories and finitely cocontinuous functors, under the construction C — Ind(C) starting from the latter
and ending with the former (and the dual construction that takes an object in Pri* to its subcategory
of compact objects). Proposition implies that colimits exist in Pr®* and the inclusion Pr** — PrF
preserves them.

Corollary 2.9. Prl“ is a presentable co-category.

PRrROOF. It suffices to show that any idempotent-complete, finitely cocomplete oco-category is a filtered
colimit of such of bounded cardinality (when modeled via quasi-categories, for instance). For simplicity,
we will sketch the argument for finitely cocomplete quasi-categories. The idempotent complete case can be
handled similarly by replacing filtered colimits with N;-filtered colimits.

To see this, let C be such a quasi-category. Consider any countable simplicial subset D of C which is
a quasi-category. We will show that D is contained in a bigger countable simplicial subset D of C which is
a finitely cocomplete oo-category such that D — C preserves finite colimits. This will show that C is the
filtered union of such subsets D (ordered by set-theoretic inclusion) and will thus complete the proof.

Thus, fix D C C countable. For each finite simplicial set K, and each map K — D, by definition there
is an extension K® — C which is a colimit diagram. We can find a countable simplicial set D’ such that
D Cc D' C C such that every diagram K — D extends over a diagram K® — D’ such that the composite
K» — D’ — D is a colimit diagram in C. Applying the small object argument (countably many times), we
can find a countable quasicategory D; with D C D; C C such that any diagram K — D; extends over a
diagram K® — D; such that the composite K> — D; — C is a colimit diagram. It follows thus that any
countable simplicial subset D of C containing all the vertices is contained in such a (countable) D;. (At each
stage in the small object argument, we also have to add in fillers to all inner horns.)

Thus, consider any countable simplicial subset D C C which is a quasi-category containing all the
vertices of C, and such that any diagram K — D (for K finite) extends over a diagram K® — D such that
the composite K — C is a colimit diagram. We have just shown that C is a (filtered) union of such. Of
course, D may not have all the colimits we want. Consider the (countable) collection Sp of all diagrams

f: K¥ — D whose composite K" LD -5 Cis a colimit. We want to enlarge D so that each of these
becomes a colimit, but not too much; we want D to remain countable.

For each f € Sp, consider Dg, C Cg/. By construction, we have an object in Dy, which is initial in
Ck/. By adding a countable number of simplices to D, though, we can make this initial in D, too; that is,
there exists a D’ C D with the same properties such that the object defined is initial in D', / Tterating this

process (via the small object argument), we can construct a countable simplicial subset D C C, containing
D, which is a quasi-category and such that any diagram K — D extends over a diagram K ® — D which is
a colimit preserved under D — C. This completes the proof. O

We can use this to describe Cat® . We have a fully faithful functor
Catito — priwv,

which sends a stable co-category C to the compactly generated, presentable stable co-category Ind(C). In fact,
Catf:) can be identified with the co-category of stable, presentable, and compactly generated oco-categories,
and colimit-preserving functors between them that also preserve compact objects, so that Cat® C Pri% as
a full subcategory.

PrOOF OF COROLLARY 2.9l We need to show that Cat®’ has all colimits. Using the explicit con-
struction of a colimit of presentable oco-categories, however, it follows that a colimit of presentable, stable
oo-categories is stable. In particular, Cat®’ has colimits and they are computed in Priw.

Finally, we need to show that any object in CatsotO is a filtered union of objects in CatsotQ of bounded
cardinality. This can be argued similarly as above (we just need to add stability into the mix).

|
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We will need some examples of limits and colimits in CatZ!.

Definition 2.10. Let C € Cat® and let D C C be a full, stable idempotent complete subcategory. We define
the Verdier quotient C/D to be the pushout in Catl

D c
.
0——>C/D

Fix € € Cat® . By definition, to give an exact functor C/D — & is equivalent to giving an exact functor
C — & which sends every object in D to a zero object; note that this is a condition rather than extra data.
The Verdier quotient can be described very explicitly. Namely, consider the inclusion Ind(D) C Ind(C) of
stable oo-categories. For any X € Ind(C), there is a natural cofiber sequence

MpX - X — LDX,
where:

(1) MpX is in the full stable subcategory of Ind(C) generated under colimits by D (i.e., Ind(D)).
(2) For any D € D, Hompyqg(c)(D, LpX) is contractible.

One can construct this sequence by taking Mp to be the right adjoint to the inclusion functor Ind(D) C
Ind(C).

We say that an object X € Ind(C) is D+-local if MpX is contractible. The full subcategory D+ C Ind(C)
of D+-local objects is a localization of Ind(C), with localization functor given by Lp. We have an adjunction

Ind(C) = D™,

where the right adjoint, the inclusion D+ C C, is fully faithful. The inclusion D+ C Ind(C) preserves filtered
colimits since D C Ind(C) consists of compact objects, so that the localization Lp preserves compact objects.
Now, the Verdier quotient can be described as the subcategory of D+ spanned by compact objects (in D+); it
is generated under finite colimits and retracts by the image of objects in C. Moreover, Ind(C/D) is precisely
D+ C Ind(C).

Remark 2.11. The pushout diagram defining the Verdier quotient is also a pullback.

Remark 2.12. A version of this construction makes sense in the world of presentable, stable co-categories
(which need not be compactly generated).

These Verdier quotients have been considered, for example, in [Mil92] under the name finite localizations.

2.2. Stable homotopy theories and 2-rings. In this paper, our goal is to describe an invariant of
symmetric monoidal stable co-categories. For our purposes, we can think of them as commutative algebra
objects with respect to a certain tensor product on Cat®. We begin by reviewing this and some basic
properties of stable homotopy theories, which are the “big” versions of these.

Definition 2.13 ([Lurl2} 6.3], [BZFN10]). Given C,D € Cat, we define the tensor product CXD € CatS’,
via the universal property

(2) Homggest (CXR D, E) =~ Fun'(C x D, €),

where Fun’(C x D, £) consists of those functors C x D — & which preserve finite colimits in each variable
separately.

It is known (see [Lurl2l 6.3]) that this defines a symmetric monoidal structure on Cat®l. The com-
mutative algebra objects are precisely the symmetric monoidal, stable oo-categories (C,®, 1) such that the
tensor product preserves finite colimits in each variable.

Definition 2.14. We let 2-Ring = CAlg(Cat2' ) be the co-category of commutative algebra objects in Cat®t .
7



The tensor product X: Cat® x Cat®® — Cat™ preserves filtered colimits in each variable; this follows
from . In particular, since Cat® is a presentable co-category, it follows that 2-Ring is a presentable
oo-category.

In this paper, we will define a functor

m<1: 2-Ring — Pro(Gpdg, )",

where we will specify what the latter means below, called the Galois group(oid). The Galois group(oid) will
parametrize certain very special commutative algebra objects in a given 2-ring. Given a stable homotopy
theory (C,®,1) (in the sense of Definition [2.1)), the invariant we will define will depend only on the small
subcategory C1"! of dualizable objects in C.

We will also define a slightly larger version of the Galois groupoid that will see more of the “infinitary”
structure of the stable homotopy theory, which will make a difference in settings where the unit is not
compact (such as K (n)-local stable homotopy theory). In this case, it will not be sufficient to work with
2-Ring. However, the interplay between 2-Ring and the theory of (large) stable homotopy theories will be
crucial in the following.

Definition 2.15. In a symmetric monoidal co-category (C,®,1), an object X is dualizable if there exists
an object Y and maps
coev

1CyYyeX, XoYIi1,

such that the composites

Xeo X1 "8 XeoyvyeX Y X, veoloY YW yvexey "8y

are homotopic to the respective identities. In other words, X is dualizable if and only if it is dualizable in
the homotopy category with its induced symmetric monoidal structure.

These definitions force natural homotopy equivalences
(3) Home(Z,72' @ X) ~Home(Z @Y, 2", Z,Z'e€C.

Now let (C,®,1) be a stable homotopy theory. The collection of all dualizable objects in C is a stable and
idempotent complete subcategory, which is closed under the monoidal product. Moreover, suppose that 1 is
k-compact for some regular cardinal k. Then with Z = 1 forces any dualizable object Y to be x-compact
as well. In particular, it follows that the subcategory of C spanned by the dualizable objects is (essentially)
small and belongs to 2-Ring. (By contrast, no amount of compactness is sufficient to imply dualizability).

We thus have the two constructions:

(1) Given a stable homotopy theory, take the symmetric monoidal, stable co-category of dualizable
objects, which is a 2-ring.
(2) Given an object C € 2-Ring, Ind(C) is a stable homotopy theory.

These two constructions are generally not inverse to one another. However, the “finitary” version of the
Galois group we will define will be unable to see the difference.

Next, we will describe some basic constructions in 2-Ring. 2-Ring has all limits, and these may be
computed at the level of the underlying oo-categories. As such, these homotopy limit constructions can be
used to build new examples of 2-rings from old ones. These constructions will also apply to stable homotopy
theories. We can also describe Verdier quotients.

Definition 2.16. Let (C,®,1) € 2-Ring and let Z C C be a full stable, idempotent-complete subcategory.
We say that 7 is an ideal if whenever X € C,Y € Z, the tensor product X ® Y € C actually belongs to Z.

If 7 C C is an ideal, then the Verdier quotient C/Z naturally inherits the structure of an object in 2-Ring.
This follows naturally from [Lurl2, Proposition 2.2.1.9] and the explicit construction of the Verdier quotient.
By definition, Ind(C/Z) consists of the objects X € Ind(C) which have the property that Homp,q(c) (1, X)
is contractible when I € Z. We can describe this as the localization of Ind(C) at the collection of maps
f: X — Y whose cofiber belongs to Ind(Z). These maps, however, form an ideal since Z is an ideal. As
before, given D € 2-Ring, we have a natural fully faithful inclusion

HOmg_Ring (C/I, D) C HOHlQ_Ring (C, D),
8



where the image of the map consists of all symmetric monoidal functors C — D which take every object in
T to a zero object.

Finally, we describe some free constructions. Let Sp be the oo-category of spectra, and let C be a
symmetric monoidal co-category. Then the oo-category Fun(C°P, Sp) is a stable homotopy theory under the
Day convolution product [Lurl2l 6.3.1]. Consider the collection of compact objects in here, which we will
write as the “monoid algebra” Sp“|[C]. One has the universal property

Homoy gring (Sp”[C], D) ~ Fung (C, D),

i.e., an equivalence between functors of 2-rings Sp[C] — D and symmetric monoidal functors C — D. We
can also define the free stable homotopy theory on C as the Ind-ization of this 2-ring, or equivalently as
Fun(C°P, Sp).

Example 2.17. The free symmetric monoidal oco-category on a single object is the disjoint union | |,,~, BXn,
or the groupoid of finite sets and isomorphisms between them, with LI as the symmetric monoidal product.
Using this, we can describe the “free stable homotopy theory” on a single object. As above, an object in this
stable homotopy theory consists of giving a spectrum X,, with a ¥,,-action for each n; the tensor structure
comes from a convolution product. If we consider the compact objects in here, we obtain the free 2-ring on
a given object.

Finally, we will need to discuss a bit of algebra internal to C.

Definition 2.18. To C, there is a natural co-category of commutative algebra objects which we will denote
by CAlg(C).

Recall that a commutative algebra object in C consists of an object X € C together with a multiplication
map m: X ® X — X and a unit map 1 — X, which satisfy the classical axioms of a commutative algebra
object “up to coherent homotopy”; for instance, when C = Sp, one obtains the classical notion of an E.-ring.
The amount of homotopy coherence is sufficient to produce the following:

Definition 2.19 ([Lurl2 Chapter 4]). Let C be a stable homotopy theory. Given A € CAlg(C), there is a
natural co-category Modc(A) of A-module objects internal to C. Mod¢(A) acquires the structure of a stable
homotopy theory with the relative A-linear tensor product.

The relative A-linear tensor product requires the formation of geometric realizations, so we need infinite
colimits to exist in C for the above construction to make sense in general.

2.3. Examples. Stable homotopy theories and 2-rings occur widely in “nature,” and in this section, we
describe a few basic classes of such widely occurring examples. We begin with two of the most fundamental
ones.

Example 2.20 (Derived categories). The derived oo-category D(R) of a commutative ring R (with the
derived tensor product) is a stable homotopy theory.

Example 2.21 (Modules over an E.-ring). As a more general example, the co-category Mod(R) of modules
over an E,-ring spectrum R with the relative smash product is a stable homotopy theory. For instance,
taking R = S°, we get the oco-category Sp of spectra. This is the primary example (together with E-localized
versions) considered in [Rog08].

Example 2.22 (Quasi-coherent sheaves). Let X be a scheme (or algebraic stack, or even prestack). To
X, one can associate a stable homotopy theory QCoh(X) of quasi-coherent complexes on X. By definition,
QCoh(X) is the homotopy limit of the derived oco-categories D(R) where SpecR — X ranges over all maps
from affine schemes to X. For more discussion, see [BZFN10J.

Example 2.23. Consider a cartesian diagram of E.,-rings
A X A Al—— A4 .

L

A/ > A//



We obtain a diagram of stable homotopy theories

MOd(A X A A/) —— MOd(A) s

i i

Mod(A’) ———— Mod(A")
and in particular a symmetric monoidal functor
Mod(A x an A") = Mod(A) Xnpeacary Mod(A').
This functor is generally not an equivalence in 2-Ring.

This functor is always fully faithful. However, if A, A’, A” are connective and A — A", A’ — A” induce
surjections on g, then it is proved in [Lurllal Theorem 7.2] that the functor induces an equivalence on
the connective objects or, more generally, on the k-connective objects for any k € Z. In particular, if we let
Mod® denote perfect modules, we have an equivalence of 2-rings

Mod® (A X Ar A/) ~ MOdW(A) X Mod« (A’") Mod® (A/)7

since an A X 4~ A’-module is perfect if and only if its base-changes to A, A’ are. However, the Ind-construction
generally does not commute even with finite limits.

Example 2.24 (Functor categories). As another example of a (weak) 2-limit, we consider any oo-category K
and a stable homotopy theory C; then Fun(K, C) is naturally a stable homotopy theory under the “pointwise”
tensor product. If K = BG for a group G, then this example endows the oo-category of objects in C with a
G-action with the structure of a stable homotopy theory.

Finally, we list several other miscellaneous examples of stable homotopy theories.

Example 2.25 (Hopf algebras). Let A be a cocommutative Hopf algebra over the field k. In this case, the
(ordinary) category A of discrete A-modules has a natural symmetric monoidal structure via the k-linear
tensor product. In particular, its derived co-category D(A) is naturally symmetric monoidal, and is thus a
stable homotopy theory. Stated more algebro-geometrically, SpecA" is a group scheme G over the field k. If
A is finite-dimensional over k, then D(A) is the oo-category of quasi-coherent sheaves of complexes on the
classifying stack BG.

Example 2.26 (Stable module oo-categories). Let A be a finite-dimensional cocommutative Hopf algebra
over the field k. Consider the derived oo-category D(A)“ (where A is the abelian category of A-modules, as in
Example of A-module spectra which are perfect as k-module spectra. Inside D(A)“ is the subcategory
T of A-module spectra which are perfect as A-module spectra. This subcategory is stable, and is an ideal by
the observation (a projection formula of sorts) that the k-linear tensor product with A with any A-module
is free as an A-module.

Definition 2.27. The stable module co-category Sty = Ind(D(A)“/Z) is the Ind-completion of the
Verdier quotient D(A)“/Z. If A = k[G] is the group algebra of a finite group G, we write Stg (k) for Styq.

The stable module co-categories of finite-dimensional Hopf algebras (especially group algebras) and their
various invariants (such as the Picard groups and the thick subcategories) have been studied extensively in
the modular representation theory literature. For a recent survey, see [BIK11].

Example 2.28 (Bousfield localizations). Let C be a stable homotopy theory, and let E € C. In this case,
there is a naturally associated stable homotopy theory LgC of E-local objects. By definition, LgC is a full
subcategory of C; an object X € C belongs to LgC if and only if whenever Y € C satisfies Y ® E ~ 0, the
spectrum Home (Y, X) is contractible. The oo-category LgC is symmetric monoidal under the E-localized
tensor product: since the tensor product of two E-local objects need not be E-local, one needs to localize
further. For example, the unit object in LgC is Lg1.
There is a natural adjunction
C = LgC,
where the (symmetric monoidal) left adjoint sends an object to its E-localization, and where the (lax sym-
metric monoidal) right adjoint is the inclusion.
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2.4. Morita theory. Let (C,®,1) be a stable homotopy theory. In general, there is a very useful
criterion for recognizing when C is equivalent (as a stable homotopy theory) to the co-category of modules
over an E,-ring.

Note first that if R is an E-ring, then the unit object of Mod(R) is a compact generator of the
oo-category Mod(R). The following result asserts the converse.

Theorem 2.29 ([Lurl2, Proposition 8.1.2.7]). Let C be a stable homotopy theory where 1 is a compact
generator. Then there is a natural symmetric monoidal equivalence

Mod(R) ~C,
where R ~ End¢ (1) is naturally an Eo-ring.

In general, given a symmetric monoidal stable co-category C, the endomorphism ring R = End¢(1) is
always naturally an E.-ring, and one has a natural adjunction

Mod(R) = C,

where the left adjoint “tensors up” an R-module with 1 € C, and the right adjoint sends X € C to the
mapping spectrum Home (1, X), which naturally acquires the structure of an R-module. The left adjoint is
symmetric monoidal, and the right adjoint is laz symmetric monoidal. In general, one does not expect the
right adjoint to preserve filtered colimits: it does so if and only if 1 is compact. In this case, if 1 is compact,
we get a fully faithful inclusion
Mod(R) C C,
which exhibits Mod(R) as a colocalization of C. If 1 is not compact, we at least get a fully faithful inclusion
of the perfect R-modules into C.

For example, let G be a finite p-group and k be a field of characteristic p. In this case, every finite-
dimensional G-representation on a k-vector space is unipotent: any such has a finite filtration whose subquo-
tients are isomorphic to the trivial representation. From this, one might suspect that one has an equivalence
of stable homotopy theories Fun(BG, Mod(k)) ~ Mod(k"?), where k"“ is the Eo-ring of endomorphisms of
the unit object k, but this fails because the unit object of Mod(k[G]) fails to be compact: taking G-homotopy
fixed points does not commute with homotopy colimits. However, by fixing this reasoning, one obtains an

equivalence

Mod(k[G])* % Fun(BG, Mod® (k)) ~ Mod® (k"%),
between perfect k-module spectra with a G-action and perfect k"“-modules. If one works with stable module

oo-categories, then the unit object 4s compact (more or less by fiat) and one has:

Theorem 2.30 (Keller [Kel94]). Let G be a finite p-group and k a field of characteristic p. Then we have
an equivalence of symmetric monoidal co-categories

Mod(k'¢) ~ Stq(k),

between the oco-category of modules over the Tate E.o-ring k' and the stable module co-category of G-
representations over k.

The Tate construction k'G, for our purposes, can be defined as the endomorphism E..-ring of the unit
object in the stable module co-category St (k). As a k-module spectrum, it can also be obtained as the
cofiber of the norm map kpg — k"C.

2.5. Etale algebras. Let R be an E..-ring spectrum. Given an E..-R-algebra R’, recall that the
homotopy groups m, R’ form a graded-commutative m,R-algebra. In general, there is no reason for a given
graded-commutative 7, R-algebra to be realizable as the homotopy groups in this way, although one often
has various obstruction theories to attack such questions. There is, however, always one case in which the
obstruction theories degenerate completely.

Definition 2.31. An E..-R-algebra R’ is étale if:

(1) The map moR — moR’ is étale (in the sense of ordinary commutative algebra).
(2) The natural map moR’ ®x g 7+R — m. R’ is an isomorphism.

11



The basic result in this setting is that the theory of étale algebras is entirely algebraic: the obstructions
to existence and uniqueness all vanish.

Theorem 2.32 ([Lurl2, Theorem 8.5.4.2]). Let R be an E-ring. Then the co-category of étale R-algebras
is equivalent (under my) to the ordinary category of étale moR-algebras.

One can show more, in fact: given an étale R-algebra R’, then for any R-algebra R”, the natural map
Homp/(R',R") = Homg g/ (moR', moR")

is a homotopy equivalence. Using an adjoint functor theorem approach (and the infinitesimal criterion for
étaleness), one may even define R’ in terms of mp R’ in this manner, although checking that it has the desired
homotopy groups takes additional work. In particular, note that étale R-algebras are 0-cotruncated objects
of the oo-category CAlgp,: that is, the space of maps out of any such is always homotopy discrete. The
finite étale algebra objects we shall consider in this paper will also have this property.

Example 2.33. This implies that one can adjoin nth roots of unity to the sphere spectrum S° once n is
inverted. An argument of Hopkins implies that the inversion of n is necessary: one cannot adjoin a pth root
of unity to p-adic K-theory, as one sees by considering the 8-operator on K (1)-local E..-rings which satisfies
P = 9(x) + pf(z) where 9 is a homomorphism on my. If one could adjoin (, to p-adic K-theory, then one
would have pf((,) = 1 — ¢ for some unit a € (Z/pZ)*, but p does not divide 1 — (5 in Z,[(p].

Let (C,®,1) be a stable homotopy theory. We will now attempt to do the above in C itself. We will
obtain some of the simplest classes of objects in CAlg(C). The following notation will be convenient.

Definition 2.34. Given a stable homotopy theory (C,®, 1), we will write
(4) X ~ mHome(1,X).

In particular, m,1 ~ m,End¢(1, 1) is a graded-commutative ring, and for any X € C, 7, X is naturally a
s 1-module.

Remark 2.35. Of course, 7, does not commute with infinite direct sums unless 1 is compact. For example,
. fails to commute with direct sums in Lg,)Sp (which is actually compactly generated, albeit not by the
unit object).

Let (C,®,1) be a stable homotopy theory. As in the previous section, we have an adjunction of symmetric
monoidal co-categories
Mod(R) = C,
where R = End¢(1) is an Eo-ring. Given an étale mgR ~ mpl-algebra R(, we can thus construct an étale
R-algebra R’ and an associated object R’ ®p 1 € CAlg(C). R’ ®g 1 naturally acquires the structure of a
commutative algebra object, and, by playing again with adjunctions, we find that

HomCAlg(C) (R/ ®Qr1,T) ~ HomWOl(R{), moT), T € CAlg(C).
Definition 2.36. The objects of CAlg(C) obtained in this manner are called classically étale.

The classically étale objects in CAlg(C) span a subcategory of CAlg(C). In general, this is not equivalent
to the category of étale my R-algebras if 1 is not compact (for example, Mod(R) — C need not be conservative;
take C = Ly (n)Sp and LK(n)SO ® Q). However, note that the functor

Mod*(R) — C,
from the oo-category Mod® (R) of perfect R-modules into C, is always fully faithful. It follows that there is
a full subcategory of CAlg(C) equivalent to the category of finite étale myR-algebras. This subcategory will
give us the “algebraic” part of the Galois group of C.

We now specialize to the case of idempotents. Let (C, ®,1) be a stable homotopy theory, and R € CAlg(C)
a commutative algebra object, so that myR is a commutative ring.

Definition 2.37. An idempotent of R is an idempotent of the commutative ring mgR. We will denote the
set of idempotents of R by Idem(R).
12



The set Idem(R) acquires some additional structure; as the set of idempotents in a commutative ring, it
is naturally a Boolean algebra under the multiplication in mgR and the addition that takes idempotents e, €’
and forms e + ¢’ — ee’. For future reference, recall the following;:

Definition 2.38. A Boolean algebra is a commutative ring R such that 22 = x for every 2 € R. The
collection of all Boolean algebras forms a full category Bool of the category of commutative rings.

Suppose given an idempotent e of R, so that 1 — e is also an idempotent. In this case, we can obtain a
splitting
R~ R[e '] x R[(1—¢)7Y]
as a product of two objects in CAlg(C). To see this, we may reduce to the case when R = 1, by replacing C
by Mod¢(R). In this case, we obtain the splitting from the discussion above in Definition [2.36} R[e~!] and
R[(1—e)~!] are both classically étale (and in the thick subcategory generated by R). Conversely, given such
a splitting, we obtain corresponding idempotents, e.g., reducing to the case of an E,.-ring.

Suppose the unit object 1 € C decomposes as a product 1; x 15 € CAlg(C). In this case, we have a

decomposition at the level of stable homotopy theories
C~ MOdc(ll) X MOdc(lg),

so in practice, most stable homotopy theories that in practice we will be interested in will have no such
nontrivial idempotents. However, the theory of idempotents will be very important for us in this paper.

For example, using the theory of idempotents, we can describe maps out of a product of commutative
algebras.
Proposition 2.39. Let A, B € CAlg(C). Then if C € CAlg(C), then we have a homotopy equivalence

Homgalg(ey(A x B,C) ~ |_| Homcaig(e) (4, C1) x Homgpg(e) (B, C2),
C:’Cl X C2

where the disjoint union is taken over all decompositions C ~ Cy x Cy in CAlg(C) (i.e., over idempotents in

c).

PROOF. Starting with a map A x B — C, we get a decomposition of C' into two factors coming from
the two natural idempotents in A x B, whose images in C' give two orthogonal idempotents summing to 1.
Conversely, starting with something in the right-hand-side, given via maps A — C; and B — C3 and an
equivalence C ~ (C7 x (3, we can take the product of the two maps to get A x B — C. The equivalence
follows from the universal property of localization. |

For example, consider the case of A, B = 1. In this case, we find that, if C € CAlg(C), then
HomCAlg(C)(l x1, C)

is homotopy discrete, and consists of the set of idempotents in C. We could have obtained this from the
theory of “classically étale” objects earlier. Using this description as a corepresentable functor, we find:

Corollary 2.40. The functor A — Idem(A), CAlg(C) — Bool, commutes with limits.

Remark 2.41. Corollary can also be proved directly. Since 7, commutes with arbitrary products in
C, it follows that A +— Idem(A) commutes with arbitrary products. It thus suffices to show that if we have
a pullback diagram

|1

C——=D
in CAlg(C), then the induced diagram of Boolean algebras

Idem(A) —— Idem(B)

L

Idem(C) —— Idem(D)
13
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is also cartesian. In fact, we have a surjective map of commutative rings mo(A) — mo(B) X, (p) m0(C)
whose kernel is the image of the connecting homomorphism (D) — mo(A). It thus suffices to show that
everything in the image of this connecting homomorphism has square zero, since square-zero elements do
not affect idempotents.

Equivalently, we claim that if # € m(A) maps to zero in m(B) and 7o(C), then 22 = 0. In fact, x
defines a map A — A and, in fact, an endomorphism of the exact triangle

A—- BaC— D,

which is nullhomotopic on B@ C and on D. A diagram chase with exact triangles now shows that 22 defines
the zero map A — A, as desired.

3. Descent theory

Let A — B be a faithfully flat map of discrete commutative rings. Grothendieck’s theory of faithfully
flat descent can be used to describe the category Mod*¢(A) of (discrete, or classical) A-modules in terms of
the three categories Mod¥¢(B), Mod"**(B® 4 B),Mod"**(B®4 B® 4 B). Namely, it identifies the category
ModdiSC(A) with the category of B-modules with descent data, or states that the diagram

Mod®¢(4) — Mod™™*(B) 3 Mod"™* (B © 4 B) 5 Mod™™*(B ©4 B ©4 B),

is a limit diagram in the 2-category of categories. This diagram of categories comes from the cobar construc-
tion on A — B, which is the augmented cosimplicial commutative ring

A-BZB®sB= ...

Grothendieck’s theorem can be proved via the Barr-Beck theorem, by showing that if A — B is faith-
fully flat, the natural tensor-forgetful adjunction Mod®*¢(A) = Mod®*¢(B) is comonadic. Such results are
extremely useful in practice, for instance because the category of B-modules may be much easier to study.
From another point of view, these results imply that any A-module M can be expressed as an equalizer of
B-modules (and maps of A-modules), via

M-+ M®@sBZM®sB®y B,

where the two maps are m®@b— mRbRXland mKb+— mR 1R b.

In the setting of “brave new” algebra, descent theory for maps of E., (or weaker) algebras has been
extensively considered in the papers [Lurlld), [Lurllb]. In this setting, one has a map of E,-rings
A — B, and one wishes to describe the stable co-category Mod(A) in terms of the stable oco-categories
Mod(B),Mod(B ® 4 B),.... A sample result would run along the following lines.

Theorem 3.1 ([Lurllbl Theorem 6.1]). Let A — B be a map of Ex-rings such that mo(A) — mo(B) is
faithfully flat and the map m,(A) @, (a)T0(B) — m.(B) is an isomorphism. Then the adjunction Mod(A) &
Mod(B) is comonadic, so that Mod(A) can be recovered as the totalization of the cosimplicial co-category

Mod(B) ZMod(B®4 B) = ...

In practice, the condition of faithful flatness on m.(A) — m.(B) can be weakened significantly; there
are numerous examples of morphisms of E,.-rings which do not behave well on the level of my but under
which one does have a good theory of descent (e.g., the conclusion of Theorem holds). For instance,
there is a good theory of descent along KO — KU, this can be used to describe features of the co-category
Mod(KO) in terms of the co-category Mod(KU). One advantage of considering descent in this more general
setting is that KU is much simpler algebraically: its homotopy groups are given by 7,(KU) ~ Z[3%], which
is a regular ring, even one-dimensional (if one pays attention to the grading), while 7.(KO) is of infinite
homological dimension. There are many additional tricks one has when working with modules over a more
tractable Eo-ring such as KU; we shall see a couple of them below in the proof of Theorem [6.30]

Remark 3.2. For some applications of these ideas to computations, see the paper [Mat13] (for descriptions
of thick subcategories) and the forthcoming papers [GL, [MS] (for calculations of certain Picard groups).
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In this section, we will describe a class of maps of E..-rings A — B that have an especially good theory
of descent. We will actually work in more generality, and fix a stable homotopy theory (C,®, 1), and isolate
a class of commutative algebra objects for which the analogous theory of descent (internal to C) works
especially well (so well, in fact, that it will be tautologically preserved by any morphism of stable homotopy
theories). Namely, we will define A € CAlg(C) to be descendable if the thick tensor ideal that A generates
contains the unit object 1 € C. This definition, which is motivated by the nilpotence technology of Devinatz,
Hopkins, Smith, and Ravenel [HS98), DHS88]| (one part of which states that the map L,,S° — E,, from the
E,-local sphere to Morava E-theory E,, satisfies this property), is enough to imply that the conclusion of
Theorem [3.1] holds, and has the virtue of being purely diagrammatic. The definition has also been recently
considered by [Ball3| (under the name “descent up to nilpotence”) in the setting of tensor triangulated
categories.

In the rest of the section, we will give several examples of descendable morphisms, and describe in
Section an application to descent for 2-modules (or linear co-categories), which has applications to the
study of the Brauer group. This provides a slight strengthening of the descent results in [Lurllc, Lurlld].

3.1. Comonads and descent. The language of oco-categories gives very powerful tools for proving
descent theorems such as Theorem [3.1] as well as its generalizations; specifically, the Barr-Beck-Lurie theorem
of [Lurl2| gives a criterion to check when an adjunction is comonadic (in the oo-categorical sense).

Theorem 3.3 (Barr-Beck-Lurie [Lurl2l Section 6.2]). Let F,G: C = D be an adjunction between oco-
categories. Then the adjunction is comonadic if and only if:

(1) F is conservative.
(2) Given a cosimplicial object X*® in C such that F(X*®) admits a splitting, then Tot(X*®) exists in C
and the map F(Tot(X*)) — TotF(X*®) is an equivalence.

In practice, we will be working with presentable oco-categories, so the existence of totalizations will be
assured. The conditions of the Barr-Beck-Lurie theorem are thus automatically satisfied if F' preserves all
totalizations (as sometimes happens) and is conservative.

Example 3.4. Let A — B be a morphism of E,-rings. The forgetful functor Mod(B) — Mod(A) preserves
all limits and colimits. By the adjoint functor theorem, it is a left adjoint. (The right adjoint sends an A-
module M to the B-module Hom 4 (B, M).) By the Barr-Beck-Lurie theorem, this adjunction is comonadic.

However, we will need to consider the more general case. Given a comonadic adjunction as above, one
can recover any object C' € C as the homotopy limit of the cobar construction

(5) 0—>(T0:T2c§...),

where T' = GF is the induced comonad on C. The cobar construction is a cosimplicial diagram in C consisting
of objects which are in the image of G.

Here a fundamental distinction between oo-category theory and 1-category theory appears. In 1-category
theory, the limit of a cosimplicial diagram can be computed as a (reflexive) equalizer; only the first zeroth
and first stage of the cosimplicial diagram are relevant. In n-category theory (i.e., (n, 1)-category theory),
one only needs to work with the n-truncation of a cosimplicial object. But in an oco-category C, given a
cosimplicial diagram X*®: A — C, one obtains a tower of partial totalizations

coo = Tot™(X®) = Tot" L (X*) — --- — Tot!(X*) — Tot’(X*),

whose homotopy inverse limit is the totalization or inverse limit Tot(X*®). By definition, Tot" (X*®) is the
inverse limit of the n-truncation of X*.

In an n-category, the above tower stabilizes at a finite stage: that is, the successive maps Tot™ (X) —
Totm_l(X ) become equivalences for m large (in fact, m > n). In oo-category theory, this is almost never
expected. For example, it will never hold for the cobar constructions that we obtain from descent along
maps of E,-rings except in trivial cases. In particular, is an infinite homotopy limit rather than a finite
one.

Nonetheless, there are certain types of towers that exhibit a weaker form of stabilization, and behave

close to finite homotopy limits if one is willing to include retracts. Even with proper co-categories, there
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are several instances where this weaker form of stabilization occurs, and it is the purpose of this section to
discuss that.

3.2. Pro-objects. Consider the following two towers of abelian groups:

Z Z
2 0
Z Z
2 0
Z Z

Both of these have inverse limit zero. However, there is an essential difference between the two. The second
inverse system has inverse limit zero for essentially “diagrammatic” reasons. In particular, the inverse limit
would remain zero if we applied any additive functor whatsoever. The first inverse system has inverse limit
zero for a more “accidental” reason: that there are no integers infinitely divisible by two. If we tensored this
inverse system with Z[1/2], the inverse limit would be Z[1/2].

The essential difference can be described efficiently using the theory of pro-objects: the second inverse
system is actually pro-zero, while the first inverse system is a more complicated pro-object. The theory of
pro-objects (and, in particular, constant pro-objects) in co-categories will be integral to our discussion of
descent, so we spend the present subsection reviewing it.

We begin by describing the construction that associates to a given oco-category an oco-category of pro-
objects. Although we have already used freely the (dual) Ind-construction, we review it formally for conve-
nience.

Definition 3.5 ([Lur09) Section 5.3]). Let C be an oco-category with finite limits. Then the oco-category
Pro(C) is an oo-category with all limits, receiving a map C — Pro(C) with the following properties:

(1) C — Pro(C) respects finite limits.
(2) Given an oo-category D with all limits, restriction induces an equivalence of co-categories

Fun®(Pro(C), D) ~ Fun®(C, D)

between the oo-category Fun’(Pro(C),D) of limit-preserving functors Pro(C) — D and the oo-
category of functors C — D which preserve finite limits.

There are several situations in which the oco-categories of pro-objects can be explicitly described.

Example 3.6. The oco-category Pro(S) (where S, as usual, is the oo-category of spaces) can be described
via

Pro(S) ~ Fun® (S, S)°?;
that is, Pro(S) is anti-equivalent to the co-category of accessibleﬂ functors & — S which respect finite limits.
This association sends a given space X to the functor Fun(X,-) and sends formal filtered limits to filtered
colimits of functors. The assertion that this is an equivalence of co-categories is equivalent to the statement

that every accessible functor S — S preserving finite limits is pro-representable.

Remark 3.7. An important source of objects in Pro(S) comes from étale homotopy theory: to any scheme,
one associates naturally an object in Pro(S) (as the shape of its associated étale co-topos, discussed at length
in [Lur09, Chapter 6]).

Example 3.8. Similarly, one can describe the oo-category Pro(Sp) of pro-spectra as the opposite to the
oo-category of accessible, exact functors Sp — Sp (a spectrum X is sent to Homg, (X, -) via the co-Yoneda
imbedding).

3In other words, commuting with sufficiently filtered colimits.
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By construction, any object in Pro(C) can be written as a “formal” filtered inverse limit of objects in C:
that is, C generates Pro(C) under filtered inverse limits. Moreover, C C Pro(C) as a full subcategory. If C is
idempotent complete, then C C Pro(C) consists of the “cocompact” objects.

Remark 3.9. If C is an ordinary category, then Pro(C) is a discrete category (the usual pro-category) too.

We now discuss the inclusion C C Pro(C), where C is an oo-category with finite limits.

Definition 3.10. An object in Pro(C) is constant if it is equivalent to an object in the image of C — Pro(C).

Let C have finite limits. A filtered diagram F': I — C defines a constant pro-object if and only if the
following two conditions are satisfied:

(1) F admits a limit in C.
(2) Given any functor G: C — D preserving finite limits, the inverse limit of F is preserved under G.

In other words, the inverse limit of F' is required to exist for essentially “diagrammatic reasons.” One
direction of this is easy to see (take D = Pro(C)). Conversely, if F' defines a constant pro-object, then given
C — D, we consider the commutative diagram

c—%——~p

L

Pro(C) —<> Pro(D)

The functor F': I — C — Pro(C) has an inverse limit, which actually lands inside the full subcategory
C C Pro(C). Since G: Pro(C) — Pro(D) preserves all limits, it follows formally that G o F' has an inverse
limit lying inside D C Pro(D) and that G preserves the inverse limit.

Example 3.11 (Split cosimplicial objects). Let C be an co-category with finite limits. Let X*® be a cosim-
plicial object of C. Suppose X*® extends to a split, augmented cosimplicial object. In this case, the pro-object
associated to the Tot tower of X* (i.e., the tower {Tot" X*}) is constant.

Let D be any co-category, and let F': C — D be a functor. Let X : AT — C be the augmented cosimplicial
object extending X* that can be split. Then, by [Lurl2] Section 6.2], the composite diagram

A st e BEp

is a limit diagram: that is, F'(X 1) ~ Tot F(X*), and in particular TotF'(X*®) exists.
Suppose D admits finite limits and F' preserves finite limits. Then F(Tot"X*®) ~ Tot" F(X*), since F’
preserves finite limits, so that

F(X™1) ~ holim,, Tot" F(X*) ~ holim,, F(Tot™" X*),

in D. In particular, the tower F(Tot"X®) converges to F(X~1). Taking D = Pro(C), so that the canonical
inclusion C < Pro(C) preserves finite limits, we find that the pro-object associated to the Tot tower is
equivalent to the constant object X 1.

Example 3.12 (Idempotent towers). Let X € C and let e: X — X be an idempotent self-map; this means
not only that e ~ e, but a choice of coherent homotopies, which can be expressed by the condition that one
has an action of the monoid {1, z} with two elements (where 22 = x) on X. In this case, the tower

XS XS X,

is pro-constant if it admits a homotopy limit (e.g., if C is idempotent complete). This holds for the same
reasons: the image of an idempotent is always a universal limit (see [Lur09l Section 4.4.5]).

Conversely, the fact that a pro-object indexed by a (co)filtered diagram F': I — C is constant has many
useful implications coming from the fact that the inverse limit of F' is “universal.”
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Example 3.13. Let (C,®, 1) be a stable homotopy theory. Given a (co)filtered diagram F': I — C, it follows
that if the induced pro-object is constant, then for any X € C, the natural map

(lm F(i)) © X - lm(F(3) © X),
I 1
is an equivalence. The converse need not hold (but see Lemma below).

Next, we show that in a finite diagram of oo-categories, a pro-object is constant if and only if it is
constant at each stage.

Let K be a finite simplicial set, and let F': K — Cats, be a functor into the oco-category Cato, of oo-

categories. Suppose that each F'(k) has finite limits and each edge in K is taken to a functor which respects
finite limits. In this case, we obtain a natural functor

(6) Pro (@1 F(k;)) — lim Pro(F(k)),
K K

which respects all limits.

Proposition 3.14. The functor Pro (I&HK F(k)) — lim Pro(F(k)) is fully faithful.

PROOF. In fact, the functors F'(k) — Pro(F'(k)) are fully faithful for each k € K, so that

@F(k‘) — yLnPro(F(k:))
K K

is fully faithful and respects finite limits. In order for the right Kan extension @ to be fully faithful, it
follows by [Lur09, Section 5.3] that it suffices for the imbedding lim F(k) — lim Pro(F(k)) to land in
the cocompact objects. However, over a finite diagram of oco-categories, an object is cocompact if and only
if it is cocompact pointwise, because finite limits commute with filtered colimits in spaces. O

Corollary 3.15. Let K be a finite simplicial set and let F: K — Caty be a functor as above. Then a
pro-object in Jm F(k) is constant if and only if its evaluation in Pro(F(k)) is constant for each vertex
ke K.

Proor. We have a commutative diagram

lim, F (k) lim, F(k)

i |

Pro(@K F(k)) —— Jim Pro(F(k))

where the bottom arrow is fully faithful. Given an object in Pro(@l o F (k)), it is constant if and only if the
image in Jim Pro(F(k)) belongs to lim  F'(k). Since each F'(k) — Pro(F(k)) is fully faithful, this can be

checked pointwise. O

Remark 3.16. The functor @ is usually not essentially surjective; consider for instance the failure of
essential surjectivity in Example

3.3. Descendable algebra objects. Let (C,®,1) be a 2-ring or a stable homotopy theory. In this
subsection, we will describe a definition of a commutative algebra object in C which “admits descent” in a
very strong sense, and prove some basic properties.

We start by recalling a basic definition.

Definition 3.17. If C is a stable oco-category, we will say that a full subcategory D C C is thick if D is
closed under finite limits and colimits and under retracts. In particular, D is stable. Further, if C is given a
symmetric monoidal structure, then D is a thick tensor ideal if in addition it is a tensor ideal.

Given a collection of objects in C, the thick subcategory (resp. thick tensor ideal) that they generate

is defined to be the smallest thick subcategory (resp. thick tensor ideal) containing that collection.
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The theory of thick subcategories, introduced in [DHS88|, [HS98|, has played an important role in
making “descent” arguments in proving the basic structural results of chromatic homotopy theory. Thus, it
is not too surprising that the following definition might be useful.

Definition 3.18. Given A € CAlg(C), we will say that A admits descent or is descendable if the thick
tensor ideal generated by A is all of C.

More generally, in a stable homotopy theory (C,®, 1), we will say that a morphism A — B in CAlg(C)
admits descent if B, considered as a commutative algebra object in Mod¢(A), admits descent in the sense
of Definition

We now prove a few basic properties of the property of “admitting descent,” for instance the (evidently
desirable) claim that an analog of Theorem goes through. Here is the first observation.

Proposition 3.19. If A € CAlg(C) admits descent, then A is faithful: if M € C, and M ® A ~ 0, then M
is contractible.

ProOF. Consider the collection of all objects N € C such that M ® N ~ 0. This is clearly a thick tensor
ideal. Since it contains A, it must contain 1, so that M is contractible. O

Given A € CAlg(C), one can form the cobar resolution

—
A3A®A3”.

)

which is a cosimplicial object in CAlg(C), receiving an augmentation from 1. Call this cosimplicial object
CB*(A) and the augmented version CBy, . (A4).

aug

Proposition 3.20. Given A € CAlg(C), A admits descent if and only if the cosimplicial diagram CB®(A)
defines an essentially constant pro-object on the level of towers {Tot"CB'(A)}nZO which converges to 1 (i.e.,
CB; . (A) is a limit diagram).

aug

PRrOOF. Suppose A admits descent. Consider the collection Cyooq of M € C such that the augmented
cosimplicial diagram CB;ug(A) ® M is a limit diagram, and such that the induced Tot tower converging to

M defines a constant pro-object. Our goal is to show that 1 € Cyooa-
Note first that A € Cgooa: in fact, the augmented cosimplicial diagram CB},,(A) ® A is split and so is

aug
a limit diagram and defines a constant pro-object (Example [3.11]). Moreover, Cgood is @ thick tensor ideal.
The collection of pro-objects which are constant is thick, and the tensor product of a constant pro-object
with any other object is constant (and the limit commutes with the tensor product). Since A € Cgooa, it

follows that 1 € Cgo04, Which completes the proof in one direction.
Conversely, if CB},,(A) is a limit diagram, and CB*(A) defines a constant pro-object, it follows that 1

is a retract of Tot"CB®(A), for n > 0. However, Tot"CB*®(A) clearly lives in the thick tensor ideal generated
by A, which shows that A admits descent. O

In other words, thanks to Proposition A admits descent if and only if the unit object 1 can be
obtained as a retract of a finite colimit of a diagram in C consisting of objects, each of which admits the
structure of a module over A.

One advantage of the purely categorical (and finitistic) definition of admitting descent is that it is
preserved under base change. The next result follows from Proposition [3:20]

Corollary 3.21. Let F: C — C' be a symmelric monoidal functor between symmetric monoidal, stable
oo-categories. Given A € CAlg(C), if A admits descent, then F(A) does as well.

Proposition 3.22. Let C be a stable homotopy theory. Let A € CAlg(C) admit descent. Then the adjunction
C = Mod¢(A),

given by tensoring with A and forgetting, is comonadic. In particular, the natural functor from C to the
totalization .

C — Tot (Modc(A)zModc(A@@A): )
is an equivalence.

19



PROOF. We need to check that the hypotheses of the Barr-Beck-Lurie theorem go through. By Propo-
sition [3.19] tensoring with A is conservative.

Now, fix a cosimplicial object X®: A — C such that A ® X* is split. We need to show that the map
A® Tot(X®) — Tot(A® X*)
is an equivalence. This will follow if the pro-object defined by X* (i.e., by the Tot tower) is constant. To
see that, consider the collection of objects M € C such that M ® X*® defines a constant pro-object. By

assumption (and Example [3.11)), this collection contains A, and it is a thick tensor ideal. It follows that X*®
itself defines a constant pro-object, so we are done. O

Remark 3.23. We have used the fact that we have a symmetric monoidal functor C — Pro(C), which
imbeds C as a full subcategory of Pro(C): in particular, the tensor product of two constant pro-objects in
Pro(C) is constant.

Finally, we prove a few basic permanence properties for admitting descent.

Proposition 3.24. Suppose C is a stable homotopy theory. Let A — B — C be maps in CAlg(C).

(1) If A— B and B — C admit descent, so does A — C.
(2) If A— C admits descent, so does A — B.

Proor. Consider the first claim. If A — B and B — C' admit descent, the thick tensor ideal that C'
generates in B-modules contains B. Thus, since the thick tensor ideal C generates in A-modules therefore
contains B, and the thick tensor ideal B generates in A-modules contains A, we are done.

For the second claim, we note simply that a C-module is in particular a B-module: the thick tensor
ideal that B generates contains any B-module, for instance C. O

Proposition 3.25. Let K be a finite simplicial set and let p: K — 2-Ring be a diagram. Then a commutative
algebra object A € CAlg(@K p) admits descent if and only if its “evaluations” in CAlg(p(k)) do for each
ke K.

PROOF. Admitting descent is preserved under symmetric monoidal, exact functors, so one direction is
evident. For the other, if A € CAlg(@K p) has the property that its image in each CAlg(p(k)) admits
descent, then consider the cobar construction CB®(A). It defines a constant pro-object after evaluating at
each k € K, and therefore, by Corollary it defines a constant pro-object in @ P too. The inverse
limit is necessarily the unit (since this is true at each vertex), so A admits descent. ]

3.4. Nilpotence. In this subsection, we present a slightly different (equivalent) formulation of the
definition of admitting descent, which makes clear the connection with nilpotence.

Let (C,®,1) be a stable homotopy theory and let A € C be any object. Given a map f: X — Y in C,
we say that f is A-zero if A® X tagf

The collection of all A-zero maps forms what is classically called a tensor ideal in the triangulated
category Ho(C). The main result of this subsection is that a commutative algebra object A admits descent
if and only if this ideal is nilpotent, in a natural sense.

A ®Y is nullhomotopic (as a morphism in C).

Definition 3.26. A collection Z of maps in Ho(C) is a tensor ideal if the following hold:

(1) For each X,Y, the collection of homotopy classes of maps X — Y that belong to Z is a subgroup.

(2) Given f: X »Y,9: Y - Z h: Z — W, thenif g € Z, we have hogo f € T.

(3) Given ¢g: Y — Z in Z and any other object T' € C, the tensor product g @ 17: Y T - Z QT
belongs to Z.

For any A € C, the collection of A-zero maps is clearly a tensor ideal Z4. Given two tensor ideals Z, 7,
we will define the product ZJ to be the smallest tensor ideal containing all composites g o f where f € J
and g € 7.

Proposition 3.27. Let A € CAlg(C) be a commutative algebra object. Then the following are equivalent:

(1) There exists s € N such that the composite of s consecutive A-zero maps is zero.
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(2) Z5 =0 for some s € Z>g.
(8) A admits descent.

This result is closely related to [Ball3l, Proposition 2.15].

PrOOF. Suppose first A admits descent. We want to show that Z% = 0 for some s > 0. Now, Z; = 0,
so our strategy is to use a thick subcategory argument.

We make the following three claims:
(1) If M, N € C, then Zp; C Zygn-

(2) If N is a retract of M, then Ty C Zn.
(3) Given a cofiber sequence

M — M — M"

in C, we have
Iy C Iy

Of these, the first and second are obvious. For the third, it suffices to show that the composite of an M’-null
map and an M”-null map is M-null. Suppose f: X — Y is M"-null and ¢g: Y — Z is M'-null. We want to
show that g o f is M-null. We have a diagram

XM —YQM —Z M .

N

XOM——YQM—2Z0M

Lo

XoM' —=YQM' —>=Z o M"

Here the vertical arrows are cofiber sequences. Chasing through this diagram, we find that X@ M — Y @ M
factors through X ® M — Y ® M’, so that the composite X ® M — Z ® M factors through X @ M —

YoM % Z@M — Z® M and is thus nullhomotopic.

It thus follows (from the above three items) that if M € C is arbitrary, then for any M € C belonging to
the thick tensor ideal generated by M, we have

I]SV[ C Iﬁ,

for some integer s > 0. If 1 € C belongs to this thick tensor ideal, that forces Zp; to be nilpotent.

Conversely, suppose there exists s € Z>( such that the composite of s consecutive A-zero maps is zero.
We will show that A admits descent. Given an object M € C, we want to show that M belongs to the thick
tensor ideal generated by A. For this, consider the functor

Fi(X) =fib(X > X ® A);

we have a natural map F;(X) — X, which is A-zero, and whose cofiber belongs to the thick tensor ideal
generated by A. Iteratively define F,,(X) = F1(F,,—1(X)) for n > 0. We get a tower

i By (M) = Fyqy (M) — -+ — Fy(M) — M,

where all the successive cofibers of F;(M) — F;_1(M) belong to the thick tensor ideal generated by A. By
chasing cofiber sequences, this means that the cofiber of each F;(M) — M belongs to the thick tensor ideal
generated by A.
Moreover, each of the maps in this tower is A-zero. It follows that Fs(M) — M is zero. Thus the cofiber
of Fs(M) — M is M & XF,(M), which belongs to the thick tensor ideal generated by A. Therefore, M
belongs to this thick tensor ideal, and we are done. |
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3.5. Local properties of modules. In classical algebra, many properties of modules are local for the
étale (or flat) topology. These statements can be generalized to the setting of E..-ring spectra, where one
considers morphisms R — R’ of E.-rings that are étale (or flat, etc.) on the level of my and such that the
natural map moR’ ®x,r ™« R — m. R’ is an isomorphism.

Our next goal is to prove a couple of basic results in our setting for descendable morphisms.

Proposition 3.28. Let A — B be a descendable morphism of Eoo-rings. Let M be an A-module such that
B ®4 M is a perfect B-module. Then M is a perfect A-module.

Proor. Consider a filtered category Z and a functor ¢: Z — Mod(A). We then need to show that
liquomA(M, M,) — Hom 4 (M, hgnMJ,
is an equivalence. Consider the collection U of A-modules N such that
@HomA(M,ML ®a N) — HomA(M,@ML ®a N),

is a weak equivalence; we would like to show that it contains A itself. The collection U is closed under finite
colimits, finite limits, and retracts. Observe that it contains N = B using the adjunction relation

Homy (P, P’ @4 B) ~ Homp(P ®4 B, P’ ®4 B),

valid for P, P’ € Mod(A), and the assumption that M ® 4 B is compact in Mod(B). More generally, this
implies that every tensor product B ®4 --- ®4 B € U. Since A is a retract of a finite limit of copies of

such A-modules, via the cobar construction, it follows that A € C and that M is compact or perfect in
Mod(A). O

Remark 3.29. More generally, the argument of Proposition shows that if C is an A-linear co-category,
and M € C is an object that becomes compact after tensoring with B (as an object of Mod¢(B)), then M was
compact to begin with. Proposition itself could have also been proved by observing that Mod(A) is a

totalization Tot (Mod(B) ZMod(B ®4 B) E) and an A-module is thus dualizable (equivalently, compact) if

and only if its base-change to Mod(B) is, as dualizable in an inverse limit of symmetric monoidal co-categories
can be checked vertexwise.

Proposition 3.30. Let A — B be a descendable morphism of Eo.-rings. Let M be an A-module. Then M
is invertible if and only if M ® 4 B is invertible.

PROOF. Observe first that M ®4 B is perfect (since it is invertible), so M is also perfect via Proposi-
tion The evaluation map M ® MV — A has the property that it becomes an equivalence after tensoring
up to B, since the formation of M ~ MY commutes with base extension for M perfect. It follows that
M ® MY — A is itself an equivalence, so that M is invertible. O

Let M be an A-module. If A — B is a descendable morphism of E,-rings such that M ® 4 B is a finite
direct sum of copies of B, the A-module M itself need look anything like a free module. (The finite covers
explored in this paper are examples.) However, such “locally free” A-modules seem to have interesting and
quite restricted properties.

3.6. First examples. In the following section, we will discuss more difficult examples of this phenom-
enon of admitting descent, and try to give a better feel for it. Here, we describe some relatively “formal”
examples of maps which admit descent.

We start by considering the evident faithfully flat case. In general, we do not know if a faithfully flat
map A — B of Ey-ring spectra (i.e., such that mo(A4) — mo(B) is faithfully flat and such that 7. (A) @r,(a)
mo(B) — 7« (B) is an isomorphism) necessarily admits descent, even in the case of discrete Eo-rings. This
would have some implications that seem unlikely. For example, if A and B are discrete commutative rings, it
would imply that if M is an A-module and v € Exty (M, M) is a class whose image in Ext (M ®4 B, M® 4 B)
vanishes, then ~ is nilpotent. Nonetheless, one has:

Proposition 3.31. Suppose A — B is a faithfully flat map of Eso-rings such that w.(A) is countable. Then
A — B admits descent.
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PROOF. We can use the criterion of Proposition We claim that we can take s = 2. That is, given
composable maps M — M’ — M" of A-modules each of which becomes nullhomotopic after tensoring up to
B, the composite is nullhomotopic.

To see this, we observe that any B-zero map in Mod(A) is phantom. In other words, if M — M’ is
B-zero, then any composite

P—-M-— M,

where P is a perfect A-module, is already nullhomotopic. To see this, note that P — M’ is B-zero, but to
show that it is already nullhomotopic, we can dualize and consider

T(DP @4 M') = 7. (DP ®4 M' ®4 B),

which is injective since B is faithfully flat over A on the level of homotopy groups. The injectivity of this
map forces any B-zero map P — M’ to be automatically zero to begin with.

Finally, we can conclude if we know that the composite of two phantom maps in Mod(A) is zero. This
claim is [HPS97, Theorem 4.1.8]; we need countability of 7.(A) to conclude that homology theories on
A-modules are representable (by [HPS97, Theorem 4.1.5]). O

Without the countability hypothesis, the result about phantom maps is known to be false, so one cannot
remove it (as far as we know). However, since descendability is preserved under base change, we obtain:

Corollary 3.32. Let A — B be a faithfully flat map of Eoo-rings such that mo(B) is countably presented as
a wo(A)-algebra. Then A — B admits descent.

In addition to faithfully flat maps which are not too large, there are examples of descendable maps of
Eo-rings which look more like (relatively mild) quotients.

Proposition 3.33. Suppose A is an Ey-ring which is connective and such that 7;A = 0 for i > 0. Then
the map A — moA admits descent.

PROOF. Given an A-module M such that 7. (M) is concentrated in one degree, it admits the structure of
a moA-module (canonically) and thus belongs to the thick tensor ideal generated by mpA. However, A admits
a finite resolution by such A-modules, since one has a finite Postnikov decomposition of A in Mod(A) whose
successive cofibers have a single homotopy group, and therefore belong to the thick tensor ideal generated
by mpA. O

Proposition 3.34. Let R be a discrete commutative ring. Let I C R be a nilpotent ideal. Then the map
R — R/I of discrete commutative rings, considered as a map of Eso-rings, admits descent.

PRrROOF. For k > 0, we have a finite filtration of R in the world of discrete R-modules
0=I*cI*1c...cICR,

whose successive quotients are R/I-modules. This implies that, in the stable world, R/I generates all of
Mod(R) as a thick tensor ideal. O

There are also examples of descendable morphisms where the condition on the thick tensor ideals follows
from a defining limit diagram.

Proposition 3.35. Let R be an Eo-ring and let X be a finite connected CW complex. Then the map
C*(X; R) = R given by evaluating at a basepoint * € X admits descent.
PROOF. In fact, C*(X;R) is a finite limit (indexed by X) of copies of R by definition. O

Proposition 3.36. Let R be an Eq-ring and let x € moR. Then the map R — R[z~1] x R, (where R, is
the z-adic completion) admits descent.
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PRrROOF. This follows from the arithmetic square

R[z71] .

i |

~

- m[x—l]
([l

Next we include a deeper result, which will imply (for example) that the faithful Galois extensions
considered by [Rog08] admit descent; this will be very important in the rest of the paper.

Theorem 3.37. Let C be a stable homotopy theory. Suppose 1 € C is compact, and suppose A € CAlg(C) is
dualizable and faithful (i.e., tensoring with A is conservative). Then A admits descent.

ProOF. Consider the cobar construction CB*(A) on A. The first claim is that it converges to 1: that
is, the augmented cosimplicial construction CB;ug(A) is a limit diagram. To see this, we can apply the
Barr-Beck-Lurie theorem to A. Since A is dualizable, we have for X,Y € C,

Home (Y, A ® X) ~ Hom¢ (DA ® Y, X),
and in particular tensoring with A commutes with all limits in C. Since tensoring with A is conservative, we
find that the hypotheses of the Barr-Beck-Lurie go into effect. In particular, CB®(A) converges to 1 and,

moreover, for any M € C, CB*(A) ® M converges to M. We need to show that the induced pro-object is
constant, though. This will follow from the next lemma. |

Lemma 3.38. Let (C,®,1) be a stable homotopy theory where 1 is compact. Let I be a (co)filtered category,
and let F: I — C be a functor. Suppose that for each i € I, F(i) € C is dualizable. Then F defines a
constant pro-object if and only if the following are satisfied.

(1) Hm, F(i) is a dualizable object.
(2) For each object C € C, the natural map

(7) (lm F(i)) ® C — Im(F(i) ® C)
I I

s an equivalence.

PROOF. Let D be the duality functor (of internal hom into 1); it induces a contravariant auto-equivalence
on the subcategory C"® of dualizable objects in C.

To say that F defines a constant pro-object in C (or, equivalently, C1"#!) is to say that DF, which is
an ind-object of C1"®! defines a constant ind-object. In other words, we have a commutative diagram of
oo-categories,

Cdual 4?> Cdual7 op

| |

Pro(cdual) 2; Ind(cdual)op

ic
Pro(C)
Now, since C1"» C C consists of compact objects (since 1 € C is compact), we know that there is a fully
faithful inclusion Ind(C%"®) C C, which sends an ind-object to its colimit. If C is generated by dualizable
objects, this is even an equivalence, but we do not need this.
As a result, to show that DF € Ind(C%"!) defines a constant ind-object, it is sufficient to show that its
colimit in C actually belongs to C4ual,

Let X = I'&nl F(i) € C; by hypothesis, this is a dualizable object. We have a natural map (in C)
liy DF (i) — DX,

I
24



and if we can prove that this is an equivalence, we will have shown that li s DF (i) is a dualizable object and
thus the ind-system is constant. In other words, we must show that if C' € C is arbitrary, then the natural
map
Home (DX, C) — @Homc(DF(i), )
I

is an equivalence. But this map (if one takes internal homs) is precisely , so we are done. (Il

Remark 3.39. This result requires 1 to be compact. If C is the stable homotopy theory of p-adically complete
chain complexes of abelian groups (i.e., the localization of D(Z) at Z/pZ), then Z/pZ is a dualizable, faithful
commutative algebra object, but the associated pro-object is not constant, or the p-adic integers Z, would
be torsion.

Remark 3.40. One can prove the same results (e.g., Theorem [3.37)) if A € C is given an associative (or Eq)
algebra structure, rather than an E..-algebra structure. However, the symmetric monoidal structure on C
itself is crucial throughout.

3.7. Application: descent for linear oo-categories. However, in fact, the definition of descent
considered here gives a more general result than Proposition Let C be an A-linear co-category in the
sense of [Lurllb|. In other words, C is a presentable, stable co-category which is a module in the symmetric
monoidal oo-category Prl of presentable, stable co-categories over Mod(A). This means that there is a
bifunctor, which preserves colimits in each variable,

®a: Mod(A) xC—=C, (M,C)— M®sC
together with additional compatibility data: for instance, equivalences A ® 4 M ~ M for each M € C.
Given such a C, one can study, for any A-algebra B, the co-category Mod¢(B) of B-modules internal to
C: this is the “relative tensor product” in Pr’”
Mod¢(B) = C @nod(a) Mod(B).
Useful references for this, and for the tensor product of presentable co-categories, are [Gail2] and [BZFN10].
Informally, Mod¢(B) is the target of an A-bilinear functor

®4: C x Mod(B) = Mode(B), (X, M) X ®4 M,

which is colimit-preserving in each variable, and it is universal for such. As in the case C = Mod(A), one
has an adjunction

C = Mod¢(B),
given by “tensoring up” and forgetting the B-module structure.

One can then ask whether descent holds in C, just as we studied earlier for A-modules. In other words,
we can ask whether C is equivalent to the co-category of B-modules in C equipped with analogous “descent
data”: equivalently, whether the “tensoring up” functor C — Mod¢(B) is comonadic. Stated another way,
we are asking whether, for any Mod(A)-module category C, we have an equivalence of A-linear oo-categories

8) C ~ Tot (c DMod(4) Mod(B)®<°+1>) .
In fact, the proof of Proposition [3.22] applies and we get:

Corollary 3.41. Suppose A — B is a descendable morphism of Eo-rings. Then A — B satisfies descent
for any A-linear co-category C in that the functor from C to “descent data” is an equivalence.

PrOOF. By the Barr-Beck-Lurie theorem, we need to see that tensoring with B defines a conservative
functor C — Mod¢(B) which respects B-split totalizations. Conservativity can be proved as in Proposi-
tion [3.19 Given R € C, the collection of A-modules M such that M ® 4 R ~ 0 is a thick tensor ideal in
Mod(A). If B belongs to this thick tensor ideal, so must A, and R must be zero.

Let X*: A — C be a cosimplicial object which becomes split after tensoring with B. As in Proposi-
tion [3.22] it suffices to show that the pro-object that X*® defines is constant in C. This follows via the same
thick subcategory argument: one considers the collection of M € Mod(A) such that X®* ®4 M defines a
constant pro-object, and observes that M is a thick tensor ideal containing B, thus containing A. Thus X*
defines a constant pro-object. ]
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We note that the argument via pro-objects yields a mild strengthening of the results in [Lurlld]. In
particular, it shows that if A — B is a morphism of E,-rings which is faithfully flat and countably presented,
it satisfies descent for any A-linear co-category. In [Lurlld], this is proved assuming étaleness (or in full
generality assuming existence of a t-structure). In fact, this idea of descent via thick subcategories seems to
be the right setting for considering the above questions, in view of the following result, which was explained
to us by J. Lurie:

Proposition 3.42. Let A — B be a morphism of Eo-rings such that, for any A-linear co-category, descent
holds: we have an equivalence . Then A — B admits descent.

PROOF. The idea is to attempt to descent in Pro(Mod(A)). We need to show that, given a pro-A-module
X, we can recover X via the totalization of the cobar construction X ® 4 BZ X ®4 B ®4 B.... Taking
X to be the constant pro-A-module A, then the totalization of the cobar construction in Pro(Mod(A)) is
precisely the cobar construction considered as a pro-object via the Tot tower. In particular, if it converges
to A in Pro(Mod(A)), then that is precisely equivalent to the condition that A — B should admit descent.

In order to make that argument precise, we have to address the fact that Pro(Mod(A)) is not really an A-
linear co-category: it is not, for example, presentable. However, the entire argument takes place inside a small
subcategory of Pro(Mod(A)) consisting of the x-cocompact objects Pro™ (Mod®(A)) in Pro(Mod"(A)) for
k a sufficiently large regular cardinal number, which is tensored over Mod”(A). In other words, descent fails
in Pro®) (Mod"(A)), which is a small stable co-category tensored over Mod”®(A). (Observe that & is chosen
so large that B is s-compact.) Now Pro™ (Mod"(A)) admits colimits of size < &, so Ind,. (Pro™ (Mod"(A)))
is tensored over all of Mod(A) a compatible manner and is presentable, but descent along A — B fails in
here, since

Pro™ (Mod”®(A)) — Ind, (Pro® (Mod"(A)))

preserves all limits that exist in the former. O

Finally, we note a “categorified” version of descent, which, while likely far from the strongest possible,
is already of interest in studying the Brauer group of E.,-rings such as TMF. This phenomenon has been
extensively studied (under the name “l-affineness”) in [Gail3]. We will only consider a very simple and
special case of this question.

The idea is that instead of considering descent for modules over a ring spectrum R (possibly internal

to a linear co-category), we will consider descent for the linear co-categories themselves, which we will call
2-modules, meaning modules over the presentable, symmetric monoidal co-category Mod(R).

Definition 3.43. Given an E-ring R, there is a symmetric monoidal oco-category 2-Mod(R) of R-linear oo-
categories with the R-linear tensor product. In other words, 2-Mod(R) consists of modules (in the symmetric
monoidal co-category of presentable, stable co-categories) over Mod(R).

For a useful reference, see [Gail2]. We now record:

Proposition 3.44. Let A — B be a descendable morphism of Eo-rings. Then 2-Mod satisfies descent along
A— B.

As noted in [Gail3| and |[Lurlld], this is a formal consequence of descent in linear co-categories (that
is, Corollary [3.41)), but we recall the proof for convenience.

PROOF. Recall that we have the adjunction
F = @noa(a)Mod(B), G:  2-Mod(A) & 2-Mod(B),

where G is the forgetful functor from B-linear co-categories to A-linear co-categories, and where F' is “ten-
soring up.” The assertion of the proposition is that this adjunction is comonadic. By the Barr-Beck-Lurie
theorem, it suffices to show now that F' is conservative and preserves certain totalizations.

But F is conservative because any C-linear oo-category can be recovered from its “descent data’ after
tensoring up to B (Corollary . Moreover, F' commutes with all limits. In fact, F' sends an A-linear
oo-category C to the collection of B-module objects in C, and this procedure is compatible with limits. O
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It would be interesting to give conditions under which one could show that a 2-module over R admitted
a compact generator if and only if it did so locally on R in some sense. This would yield a type of descent for
the Brauer spectrum of R (see for instance [AG12]), whose m consists of equivalence classes of invertible 2-
modules that admit a compact generator. Descent for compactly generated R-linear co-categories is known
to hold in the usual étale topology on E..-rings [Lurlld, Theorem 6.1], although the proof is long and
complex. Descent also holds for the finite covers considered in this paper which are faithful. It would be
interesting to see if it held for L,,S® — E,,, possibly in some K (n)-local sense.

4. Nilpotence and Quillen stratification

Let (C,®,1) be a stable homotopy theory. Let A € CAlg(C) be a commutative algebra object in C. In
general, we might hope that (for whatever reason) phenomena in Mod¢(A) might be simpler to understand
than phenomena in C. For example, if C = Sp, we do not know the homotopy groups of the sphere spectrum,
but there are many E..-rings whose homotopy groups we do know completely: for instance, HIF, and MU.
We might then try to use our knowledge of A and some sort of descent to understand phenomena in C. For
instance, we might attempt to compute the homotopy groups of an object M € C by constructing the cobar
resolution

M — (M®A3M®A®A§ )

and hope that it converges to M. This method is essentially the Adams spectral sequence, which, in case
C = Sp, is one of the most important tools one has for calculating and understanding the stable homotopy
groups of spheres.

In the previous section, we introduced a type of commutative algebra object A € CAlg(C) such that,
roughly, the above descent method converged very efficiently — much more efficiently, for instance, than
the classical Adams or Adams-Novikov spectral sequences. One can see this at the level of descent spectral
sequences in the existence of horizontal vanishing lines that occur at finite stages. In particular, in this situa-
tion, one can understand phenomena in C from phenomena in Mod¢(A) and Mode(A® A) “up to (bounded)
nilpotence.” We began discussing this in Proposition [3.27} The purpose of this section is to continue that
discussion and to describe several fundamental (and highly non-trivial) examples of commutative algebra
objects that admit descent. These ideas have also been explored in [Ball3], and we learned of the connection
with Quillen stratification from there.

4.1. Descent spectral sequences. Let C be a stable homotopy theory. Let A € CAlg(C) and let
M € C. As usual, we can try to study M via the A-module M ® A and, more generally, the cobar
construction M ® CB®(A). In this subsection, we will describe the effect of descendability on the resulting
spectral sequence.

Definition 4.1. The Tot tower of the cobar construction M & CB®(A) is called the Adams tower
{T,,(A, M)} of M. The induced spectral sequence converging to ., @(M ® CB*(A)) is called the Adams
spectral sequence for M (based on A).

The Adams tower has the property that it comes equipped with maps

T5(A, M)

T (A, M)

M= Ty(A, M)~ A® M

In other words, it is equipped with a map from the constant tower at M. We let the cofiber of this map of
towers be {Upn(A, M)}, ~-
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The tower {U, (A, M)} has the property that the cofiber of any map U, (A4, M) — U,_1(A4, M) admits
the structure of an A-module. Moreover, each map U, (A, M) — U,_1(A4, M) is null after tensoring with A.

Suppose now that A admits descent. In this case, the towers we are considering have particularly good
properties.

Definition 4.2 ([HPS99, Mat13]). Let Tow(C) = Fun(ZZ},C) be the oco-category of towers in C.

We shall say that a tower {X,,}, - is nilpotent if there exists N such that X,y — X, is null for each
n € Zso. It is shown in [HPS99] that the collection of nilpotent towers is a thick subcategory of Tow(C).
We shall say that a tower is strongly constant if it belongs to the thick subcategory of Tow(C) generated
by the nilpotent towers and the constant towers.

Observe that a nilpotent tower is pro-zero, and a strongly constant tower is pro-constant. In general,
nilpotence of a tower is much stronger than being pro-zero. For example, a tower {X,,} is pro-zero if there
is a cofinal set of integers ¢ for which the X; are contractible. This does not imply nilpotence.

We now recall the following fact about strongly constant towers:

Proposition 4.3 ([HPS99]). Let {X,,}n>0 € Tow(C) be a strongly constant tower. Then, for Y € C, the
spectral sequence for m,Hom(Y, @Xn) has a vanishing line at a horizontal stage.

In fact, in [HPS99], it is shown that admitting such horizontal vanishing lines is a generic property of
objects in Tow(C): that is, the collection of objects with that property is a thick subcategory. Moreover,
this property holds for nilpotent towers and for constant towers.

Corollary 4.4. Let A € CAlg(C) admit descent. Then the Adams tower {T,,(A, M)} is strongly constant.
In particular, the Adams spectral sequence converges with a horizontal vanishing line at a finite stage (inde-
pendent of M ).

PRrROOF. In fact, by Proposition [3.27] it follows that the tower {U, (A4, M)} is nilpotent, since all the
successive maps in the tower are A-zero, so the tower {T,(A, M)} is therefore strongly constant. O

It follows from this that we can get a rough global description of the graded-commutative ring m,1 if
we have a description of m,A. This is the description that leads, for instance, to the description of various
group cohomology rings “up to nilpotents.”

Theorem 4.5. Let A € CAlg(C) admit descent. Let R, be the equalizer of mi(A) Zm.(A® A). There is a
map (1) = R, with the following properties:

(1) The kernel of m.(1) = R is a nilpotent ideal.

(2) Given an element x € R, with Nz = 0, then «N" belongs to the image of 7 (1) = Ry for k>0
(which can be chosen uniformly in N ).

In the examples arising in practice, one already has a complete or near-complete picture rationally, so
the torsion information is the most interesting. For example, if p is nilpotent in 7, (1), then the map that
one gets is classically called a uniform F-isomorphism.

PROOF. In fact, R, as written is the zero-line (i.e., s = 0) of the Fs-page of the A-based Adams spectral
sequence converging to the homotopy groups of 1. The map that we have written down is precisely the
edge homomorphism in the spectral sequence. We know that anything of positive filtration at E,, must be
nilpotent of bounded order because of the horizontal vanishing line. That implies the first claim.

For the second claim, let x € Eg * be N-torsion. We want to show that z¥" survives the spectral sequence
for some k (which can be chosen independently of z). In fact, %V can support no dy by the Leibnitz rule.
Similarly, 2V ® can support no ds and survives until F4. Since the spectral sequence collapses at a finite
stage, we conclude that some 2V " must survive, and k depends only on the finite stage at which the spectral

sequence collapses.
O

Remark 4.6. One can obtain an analog of Theorem for any commutative algebra object in C replacing
1.
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4.2. Quillen stratification for finite groups. Let G be a finite group, and let R be a (discrete)
commutative ring. Consider the co-category Modg(R) ~ Fun(BG,Mod(R)) of R-module spectra with a
G-action (equivalently, the co-category of module spectra over the group ring), which is symmetric monoidal
under the R-linear tensor product. Given a subgroup H C G, we have a natural symmetric monoidal functor

Modg (R) — Modg (R),

given by restricting the G-action to H. As in ordinary algebra, we can identify this with a form of ten-
soring up: we can identify Mod g (R) with the co-category of modules over the commutative algebra object
Il /i B € Modg(R), with G permuting the factors. We state this formally as a proposition.

Proposition 4.7. Consider the commutative algebra object [[g,y R € CAlg(Modg(R)), with G-action
permuting the factors. Then the forgetful functor identifies Mody (R) with the (symmetric monoidal) oo-
category of modules in Modg (R) over [[g,x R-

We can interpret this in the following algebro-geometric manner as well. Modg(R) can be described as
the co-category of quasi-coherent complexes on the classifying stack BG of the discrete group, over the base
ring R. Similarly, Mod g (R) can be described as the oo-category of quasi-coherent sheaves on BH. One has
an affine map ¢: BH — BG (in fact, a finite étale cover), so that quasi-coherent complexes on BH can be
identified with quasi-coherent complexes on BG with a module action by 7, (Opg), which corresponds to
e /u B

In particular, we can attempt to perform “descent” along the restriction functor Modg (R) — Mod g (R),
or descent with the commutative algebra object ], JH R, or descent for quasi-coherent sheaves along the
cover BH — BG. If R contains Q or, more generally, if |G|/|H| is invertible in R, there are never any
problems, because the G-equivariant norm map [], JH R — R will exhibit R as a retract of the object
1w R, so that the commutative algebra object [[ /5 R is descendable.

The question is much more subtle in modular characteristic. For example, given a finite group G and a
field & of characteristic p with p | |G|, the group cohomology H*(G; k) is always infinite-dimensional, which
prevents the commutative algebra object [[ k from being descendable. Nonetheless, one has the following
result. Recall that a group is called elementary abelian if it is of the form (Z/p)™ for some prime number p.

Theorem 4.8 (Carlson [Car00], Balmer [Ball3]). Let G be a finite group, and let A be a collection of
elementary abelian subgroups of G such that every mazimal elementary abelian subgroup of G is conjugate
to an element of A. Then the commutative algebra object [ . 4 HG/H R admits descent in Modg(R). In
other words, there is a strong theory of descent along the map | |, 4 BA — BG of stacks.

One only needs to consider nontrivial elementary abelian p-subgroups for p noninvertible in R. If p is
invertible in R and H is an elementary abelian p-group, then [[; 5 R € Modg(R) is a retract of []g R.
To translate to our terminology, we note that [Car00, Theorem 2.1] states that there is a finitely generated
Z|G]-module V with the property that there exists a finite filtration 0 = V5 C --- C V}, = Z & V such that
the successive quotients are all induced Z[G]-modules from elementary abelian subgroups of G. Given an
object of Modg(Z) which is induced from H C G, we observe that it is naturally a module in Modg(Z) over

e w2
Note moreover that the map

(9) | | BA— BG,
AcA

which we have identified as having a good theory of descent, is explicit enough that we can also write down
the relative fiber product (| |, 4 BA) Xpg (g4 BA) via a double coset decomposition. Stated another
way, the tensor products of commutative algebra objects of the form []. JH R, which appear in the cobar
construction, can be described explicitly.

From this, and Theorem (and the immediately following remark), one obtains the following corollary,
which is known to modular representation theorists and is a generalization of the description by Quillen
[Qui71] of the cohomology ring of a finite group up to F-isomorphism.
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Corollary 4.9. Let R be an Es-algebra in Mod(Z) with an action of the finite group G. Suppose p is
nilpotent in R. Let A be the collection of all elementary abelian p-subgroups of G. Then the map

RhG N H RhA,
AcA
has nilpotent kernel in m.. The tmage, up to uniform F-isomorphism, consists of all families which are
compatible under restriction and conjugation.

A family (as € m.R") 4c4 is compatible under retriction and conjugation if, whenever g € G' conjugates
A into A’, then the induced map R"4 ~ R" carries a A into a4-; and, furthermore, whenever B C A, then
the map R"* — R"B carries a4 into ap. These compatible families form the Fy-page of the descent spectral
sequence for the cover @D When R = F), (as was considered by Quillen), the above corollary is extremely
useful since the cohomology rings of elementary abelian groups are entirely known and easy to work with.
Given a connected space X with w1 X finite, one could also apply it to the m-action on C’*()z; F,) where X
is the universal cover.

We will use this picture extensively in the future, in particular for the stable module co-categories. For
now, we note a simple example of one of its consequences.

Corollary 4.10. The inclusion Z/p C 7./p* induces a descendable map of Eo-rings
hZ/p" hZ
Fh /p —Fh /v,

for each k > 0.

Proor. Consider the oo-category Mody,,»(FF,) of F,-module spectra with a 7/p*-action. Inside here
we have the commutative algebra object [], Jph—1 F, which, by Theorem admits descent.

Note that, as mentioned earlier, the subcategory Mody, /p (F,) of perfect Fp-modules with a Z/ pF-action

is symmetric monoidally equivalent to the oo-category of perfect FZZ/ P k-modules. Thus, if we show that
17,51 Fp generates the unit F, itself as a thick tensor ideal in Modg . (F;) (rather than the larger oo-
category Mody,x(Fp)), we will be done. But this extra claim comes along for free, since we can use the
cobar construction. The cobar construction on [], /pi—1 Fp is constant as a pro-object either way, and that
means that [, belongs to the thick tensor ideal generated by [[, Jph—1 F,, in the smaller oo-category. O

4.3. Stratification for Hopf algebras. Let k be a perfect field of characteristic p, and let A be a
finite-dimensional commutative Hopf algebra over k. One may attempt to obtain a similar picture in the
derived oco-category of A-comodules. This has been considered by several authors, for example in [Pal97,
Wil81, FPO05]. The case of the previous section was A =[] k when G is a finite group, given the coproduct
dual to the multiplication in k[G]. In this subsection, which will not be used in the sequel, we describe the
connection between some of this work and the notion of descent theory considered here.

The Hopf algebra A defines a finite group scheme G = SpecA over k, and we are interested in the
oo-category of quasi-coherent complexes on the classifying stack BG and understanding descent in here. For
every closed subgroup H C G, we obtain a morphism of stacks

fH: BH — BG,

which is affine, even finite: in particular, quasi-coherent sheaves on BH can be identified with modules in
QCoh(BG) over (fu)«(Opm) € CAlg(BG4). One would hope that a certain collection of (proper) subgroup
schemes H C G would have the property that the commutative algebra objects (frr)«(Opp) jointly generate,
as a thick tensor ideal, all of QCoh(BG).

When G is constant étale, then the Quillen stratification theory (i.e., Theorem [4.8)) identifies such a
collection of subgroups. The key step is to show that if G is not elementary abelian, then the collection of
(fH)«(Opg) as H ranges over all proper subgroups of G jointly satisfy descent. The picture is somewhat
more complicated for finite group schemes.

Definition 4.11 (Palmieri [Pal97]). A group scheme G is elementary if it is commutative and satisfies
the following condition. Let O(G)Y be the “group algebra,” i.e., the dual to the ring O(G) of functions on
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G. Then for every z in the augmentation ideal of O(G)Y, we have zP = 0. Dualizing, this is equivalent to
the condition that the Verschiebung should annihilate G.

Remark 4.12. The “group algebra” O(G)Y plays a central role here because QCoh(BG@G), if we forget the
symmetric monoidal structure, is simply Mod(O(G)Y); the Hopf algebra structure on O(G)Y gives rise to
the symmetric monoidal structure.

In [Pal97], Palmieri also defines a weaker notion of quasi-elementarity for finite group schemes G, in
terms of the vanishing of certain products of Bocksteins. It is this more complicated condition that actually
ends up intervening.

Consider first a group scheme G of rank p over k (which is necessarily commutative). If G is not
diagonalizable (in which case there is no cohomology), the underlying O(G)Y is isomorphic to k[x]/zP.
In particular, there is a basic generating class 3 € H?*(BG) =~ Ext%(c)v(k,k) called the Bockstein Bq.
The Bockstein, considered as a map 1 — %21 in QCoh(BG), has the property that the cofiber of 3 is in
the thick subcategory generated by the “regular representation” O(G)V, in view of the exact sequence of
O(G)V =~ k[x]/zP-modules

0—k—0G)Y - 0G) —-k—0,
which exhibits the two-term complex O(G)Y — O(G)V as the cofiber of 8. Since the map O(G)Y — O(G)Y
is nilpotent (it is given by multiplication by x), it follows that the thick subcategory generated by the cofiber
of 3 is equal to that generated by the standard representation.

Definition 4.13. A group scheme G of rank a power of p is quasi-elementary if the product H¢>: e O (Bar)
for all surjections ¢: G — G’ for G’ a group scheme of rank p, is not nilpotent in the cohomology of BG.

For finite groups, it is a classical theorem of Serre that quasi-elementarity is equivalent to being ele-
mentary abelian: if G is a finite p-group which is not elementary abelian, then there are nonzero classes
ai,...,a, € HY(G;Z/p) such that the product of the Bocksteins []3(«q;) vanishes. Serre’s result is, as
explained in [Car00, [Ball3], at the source of the Quillen stratification theory for finite groups, in particular
Theorem A8

Proposition 4.14. A group scheme G of rank p™ is quasi-elementary if and only if the (fu)«(Opn) €
CAlg(QCoh(BG)), for H C G a proper normal subgroup scheme, do not generate the unit as a thick tensor
ideal.

PROOF. Suppose first that the (fr).(Opp) generate the unit as a thick tensor ideal: that is, descent
holds. In this case, we show that the product of Bocksteins k = [[4. o ¢ ¢*(Bcr) in Deﬁnitionis forced
to be nilpotent. In fact, we observe that x is forced to vanish because, for every proper normal subgroup
H C @G, there exists a morphism from G/H to a rank p group scheme. The pull-back from the Bockstein
from this restricts to zero on H; in particular, s restricts to zero on each normal subgroup scheme of G. By
descent, it follows that x is nilpotent.

Conversely, suppose & is nilpotent. For each rank p quotient ¢: G — G, we have a map 1 — X°1 in
QCoh(BG’) whose cofiber is in the thick subcategory of QCoh(BG’) generated by the pushforward of the
structure sheaf via * — BG'. Pulling back, we get, for each rank p quotient ¢: G — G’ with kernel Hy,
amap fg: 1 — 1[2] in QCoh(BG) whose cofiber is in the thick subcategory generated by (fu,)+(Opm,)
where fy,: BHy — BG is the natural map. It follows in particular that the cofiber of each (3, belongs
to the thick subcategory C C QCoh(BG) generated by the (fgy)«(Opg) for H < G. Therefore, using the
octahedral axiom, the cofiber of each composite of a finite string of 5,4’s (e.g., k and its powers) belongs to
C. Tt follows finally that, by nilpotence of x, the unit object itself belongs to C. (]

By induction, one gets:

Corollary 4.15. Let G be a group scheme over k of rank a power of p. Then the commutative algebra
objects (fu)«(Opm) € CAlg(QCoh(BQG)), as H C G ranges over all the quasi-elementary subgroup schemes,
admits descent.

Unfortunately, it is known that quasi-elementarity and elementarity are not equivalent for general finite
group schemes [Wil81]. There is, however, one important case when this is known.
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Let p = 2. Consider the dual Steenrod algebra A ~ F5[€1,&s,...]. This is a graded, connected, and
commutative (but not cocommutative) Hopf algebra over Fy. SpecA, which is now an (infinite-dimensional)
group scheme, admits an elegant algebro-geometric interpretation as the automorphism group scheme of the
formal additive group (é; Let A be a finite-dimensional Hopf algebra quotient of the dual Steenrod algebra,
so that G = SpecA is a finite group scheme inside the group scheme of automorphisms of @;

Theorem 4.16 (Wilkerson [Wil81]). Let A be as above, and let B range over all the elementary subgroup
schemes H C G. Then the map | | ;.3 BH — BG, admits descent, in the sense that the commutative algebra
object []ep(fr)«(Opr) € CAlg(QCoh(BG)) does.

In particular, it is known that for subgroup schemes of SpecA, elementarity and quasi-elementarity are
equivalent. These ideas have been used by Palmieri [Pal99] to give a complete description of the cohomology
of such Hopf algebras up to F-isomorphism at the prime 2.

4.4. Chromatic homotopy theory. Thick subcategory ideas were originally introduced in chromatic
homotopy theory. Let E,, denote a Morava E-theory of height n; thus mo(E,,) ~ W (k)[[v1, ..., Un—1]] where
W (k) denotes the Witt vectors on a perfect field k of characteristic p. Moreover, m.(E,) =~ mo(E,)[t5'] and
E,, is thus even periodic; the associated formal group is the Lubin-Tate universal deformation of a height n
formal group over the field k. By a deep theorem of Goerss-Hopkins-Miller, F,, has the (canonical) structure
of an E,.-ring.

Let L,, denote the functor of localization at E,,. The basic result is the following:

Theorem 4.17 (Hopkins-Ravenel [Rav92, Chapter 8]). The map L,S° — E,, admits descent.

In other words, the E,-based Adams-Novikov spectral sequence degenerates with a horizontal vanishing
line at a finite stage, for any spectrum. This degeneration does not happen at the Es-page (e.g., for the
sphere) and usually implies that a great many differentials are necessary early on. Theorem which
implies that E,-localization is smashing, is fundamental to the global structure of the stable homotopy cate-
gory and its localizations. As in the finite group case, one of the advantages of results such as Theorem [4.17]
is that E,, is much simpler algebraically than is L, S°.

The Hopkins-Ravenel result is a basic finiteness results of the FE,-local stable homotopy category. It
implies, for instance, that many homotopy limits that one takes (such as the homotopy fixed points for the
Z/2-action on KU) behave much more like finite homotopy limits than infinite ones.

Example 4.18. Let R be an Es-ring spectrum which is L,-local. Then it follows that the map from m, (R)
to the zero-line of the Fs-page of the Adams-Novikov spectral sequence for R is an F-isomorphism. Indeed,
we know that the map from 7, (R) to the zero-line at Es is a rational isomorphism and, moreover, everything
above the s = 0 line vanishes at Es. (This comes from the algebraic fact that rationally, the moduli stack of
formal groups is a BG,, and has no higher cohomology.)

Example 4.19. Let R be an FE,-local ring spectrum. Then any class in 7.(R) which maps to zero in
(En)«(R) is nilpotent. This is a very special case of the general (closely related) nilpotence theorem of
[DHSS88|, [HS98]. For an E.-ring, by playing with power operations, one can actually prove a stronger
result [MINN14]: any torsion class is automatically nilpotent.

5. Axiomatic Galois theory

Let (X, %) be a pointed, connected topological space. A basic and useful invariant of (X,*) is the
fundamental group m (X, «), defined as the group of homotopy classes of paths 7: [0,1] = X with v(0) =
(1) = %. This definition has the disadvantage, at least from the point of view of an algebraist, of using
intrinsically the unit interval [0,1] and the topological structure of the real numbers R. However, the
fundamental group also has another incarnation that makes no reference to the theory of real numbers, via
the theory of covering spaces.
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Definition 5.1. A map p: Y — X of topological spaces is a covering space if, for every z € X, there
exists a neighborhood U, of x such that in the pullback

Y xx Uy —>Y,

L

U, X
the map Y x x U, — U, has the form | | U, — U, for a set S.

The theory of covering spaces makes, at least a priori, no clear use of [0, 1]. Moreover, understanding the
theory of covering spaces of X is essentially equivalent to understanding the group 71 (X, *). If X is locally
contractible, then one has the following basic result:

Theorem 5.2. Let Covy be the category of maps Y — X which are covering spaces. We have an equivalence
of categories Covx = Setr, (x ), which sends a cover p:' Y — X to the fiber p~L(*) with the monodromy
action of (X, *).

The fundamental group w1 (X, *) can, in fact, be recovered from the structure of the category Covy.
This result suggests that the theory of the fundamental group should be more primordial than its definition
might suggest; at least, it might be expected to have avatars in other areas of mathematics in which the
(seemingly general) notion of a covering space makes sense.

Grothendieck realized, in [Gro03], that there is a purely algebraic notion of a finite cover for a scheme
(rather than a topological space): that is, given a scheme X, one can define a version of Covx that cor-
responds to the topological notion of a finite cover. When X is a variety over the complex numbers C,
the algebraic notion turns out to be equivalent to the topological notion of a finite cover of the complex
points X (C) with the analytic topology. As a result, in [Gro03], it was possible to define a profinite group
classifying these finite covers of schemes. Grothendieck had to prove a version of Theorem without an a
priori definition of the fundamental group, and did so by aziomatizing the properties that a category would
have to satisfy in order to arise as the category of finite sets equipped with a continuous action of a profinite
group. He could then define the group in terms of the category of finite covers. The main objective of this
paper is to obtain similar categories from stable homotopy theories.

The categories that appear in this setting are called Galois categories, and the theory of Galois categories
will be reviewed in this section. We will, in particular, describe a version of Grothendieck’s Galois theory
that does not require a fiber functor, relying primarily on versions of descent theory.

5.1. The fundamental group. To motivate the definitions, we begin by quickly reviewing how the
classical étale fundamental group of [Gro03] arises.

Definition 5.3. Let f: Y — X be a finitely presented map of schemes. We say that f: ¥ — X is étale if
/ is flat and the sheaf 2y, x of relative Kéahler differentials vanishes.

Etaleness is the algebro-geometric analog of being a “local homeomorphism” in the complex analytic
topology. Given it, one can define the analog of a (finite) covering space.

Definition 5.4. A map f: Y — X is a finite cover (or finite covering space) if f is finite and étale. The
collection of all finite covering spaces of X forms a category Covy, a full subcategory of the category of
schemes over X.

The basic example of a finite étale cover is the map | |¢ X — X. If X is connected, then a map ¥ — X
is a finite cover if and only if it locally has this form with respect to the flat topology. In other words, a map
Y — X is a finite cover if and only if there exists a finitely presented, faithfully flat map X’ — X such that
the pull-back

X/XXY4>Y7

L

X —X
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is of the form | |¢ X’ — X’ where S is a finite set; if X is not connected, the number of sheets may vary
over X. In other words, one has an analog of Definition [5.1] where “locally” is replaced by “locally in the
flat topology.” This strongly suggests that the algebro-geometric definition of a finite cover is a good analog
of the conventional topological one.

Example 5.5. Suppose X = Speck where k is an algebraically closed field. In this case, there is a canonical
equivalence of categories

Covx ~ FinSet,

where FinSet is the category of finite sets, which sends an étale cover Y — X to its set of connected
components.

Fix a geometric point T — X, and assume that X is a connected scheme. Grothendieck’s idea is to
extract the fundamental group m1 (X, T) directly from the structure of the category Covx. In particular, as
in Theorem the category Covx will be equivalent to the category of representations (in finite sets) of a
certain (profinite) group m (X, Z).

Definition 5.6. The fundamental group 71 (X,Z) of the pair (X, Z) is given by the automorphism group
of the forgetful functor

Covy — FinSet,

which consists of the composite
Covx — Covz =~ FinSet,

where the first functor is the pull-back and the second is the equivalence of Example [5.5]

The automorphism group of such a functor naturally acquires the structure of a profinite group, and the
forgetful functor above naturally lifts to a functor Covx — FinSet,, (x z), where FinSet, (x z) denotes the
category of finite sets equipped with a continuous action of the profinite group FinSet, (x z)-

Then, one has:

Theorem 5.7 (Grothendieck [Gro03]). The above functor Covx — FinSet,, xz) is an equivalence of
categories.

Grothendieck proved Theorem by axiomatizing the properties that a category would have to satisfy
in order to be of the form FinSets for G a profinite group, and checking that any Covy is of this form. We
review the axioms here.

Recall that, in a category C, a map X — Y is a strict epimorphism if the natural diagram
Xxy XZX =Y,
is a coequalizer.

Definition 5.8 (Grothendieck [Gro03]). A classical Galois category is a category C equipped with a
fiber functor F': C — FinSet satisfying the following axioms:

(1) C admits finite limits and F' commutes with finite limits.

(2) C admits finite coproducts and F' commutes with finite coproducts.

(3) C admits quotients by finite group actions, and F' commutes with those.

(4) F is conservative and preserves strict epimorphisms.

(5) Every map X — Y in C admits a factorization X — Y’ — Y where X — Y’ is a strict epimorphism
and where Y’ — Y is a monomorphism, in fact, an inclusion of a summand.

Let C be a classical Galois category, with fiber functor F': C — FinSet. Grothendieck’s Galois theory
shows that C can be recovered as the category of finite sets equipped with a continuous action of a certain
profinite group.

Definition 5.9. The fundamental (or Galois) group 71 (C) of a classical Galois category (C, F') in the
sense of Grothendieck is the automorphism group of the functor F': C — FinSet.
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The fundamental group of C is naturally a profinite group, as a (non-filtered) inverse limit of finite
(symmetric) groups. Note that if C is a classical Galois category with fiber functor F', if 71(C) is the Galois
group, then the fiber functor C — FinSet naturally lifts to

C— FinSetﬂ.l(c),
just as before.

Proposition 5.10 (Grothendieck [Gro03l Exp. V, Theorem 4.1]). If (C, F) is a classical Galois category,
then the functor C — FinSet,, ¢y as above is an equivalence of categories.

Given a connected scheme X with a geometric point T — X, then one can show that the category Covx
equipped with the above fiber functor (of taking the preimage over T and taking connected components) is
a classical Galois category. The resulting fundamental group is a very useful invariant of a scheme, and for
varieties over an algebraically closed fields of characteristic zero can be computed by profinitely completing
the topological fundamental group (i.e., that of the C-points). In particular, Theorem is a special case

of Proposition

5.2. Definitions. In this section, we will give an exposition of Galois theory appropriate to the non-
connected setting. Namely, to a type of category which we will simply call a Galois category, we will attach
a profinite groupoid: that is, a pro-object in the (2, 1)-category of groupoids with finitely many objects and
finite automorphism groups. The advantage of this approach, which relies heavily on descent theory, is that
we will not start by assuming the existence of a fiber functor, since we might not have one a priori.

The use of profinite groupoids in Galois theory is well-known (e.g., [BJO1), [CJF13|), and the main
result below (Theorem [5.35) is presumably familiar to experts; we have included a detailed exposition for
lack of a precise reference and because our (2, 1)-categorical approach may be of some interest.

To begin with, we start by reviewing some category theory.
Definition 5.11. We say that an object () in a category C is empty if any map x — ) is an isomorphism,
and if () is initial.

For example, the empty set is an empty object in the category of sets. In the opposite to the category

of commutative rings, the zero ring is empty.

Definition 5.12. Let C be a category admitting finite coproducts, such that the initial object (i.e., the
empty coproduct) is empty. We shall say that C admits disjoint coproducts if for any z,y € C, the natural

square
1} T
Y U

The category of sets (or more generally, any topos) admits disjoint coproducts. The opposite of the
category of commutative rings also admits disjoint coproducts.

[
)

— T

Y
is cartesian.

Definition 5.13. Let C be a category admitting finite coproducts and finite limits. We will say that
coproducts are distributive if for every x — y in C, the pullback functor

C/y*)C/w

commutes with finite coproducts.

Similarly, the category of sets (or any topos) and the opposite to the category of commutative rings
satisfy this property and are basic examples to keep in mind.

Suppose C admits disjoint and distributive coproducts. Then C acquires the following very useful feature
(familiar from Proposition . Given an object z ~ x1 U x5 in C, then we have a natural equivalence of
categories,

C/I ~ C/rl X C/Iz,
which sends an object y — x of C/, to the pair (y X, 1 — 1,y X T2 = T2).
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Definition 5.14. Let C be a category admitting finite limits. Given a map y — z in C, we have an adjunction
(10) Cry = Cras

where the left adjoint sends ' — y to the composite ' — y — x, and the right adjoint takes the pullback
along y — .

We will say that y — z is an effective epimorphism if the above adjunction is monadic. Equivalently,
form the bar construction in C, N
2y Xa Y3,
which is a simplicial object in C augmented over x. Applying the pullback functor everywhere, we get a

cosimplicial category
N

Cry 3 Cryxay QR
receiving an augmentation from C/,. Then y — x is an effective epimorphism if the functor

Cla = Tot (Cpy 2 Crypy = - ).

—
2y

is an equivalence of categories. If C is an co-category, we can make the same definition.

We note that whether or not a map y — x is an effective epimorphism can be checked using the Barr-
Beck theorem applied to the adjunction . Namely, the pullback along y — = needs to preserve reflexive
coequalizers which are split under pullback, and it needs to be conservative. In particular, it follows that
the base change of an effective epimorphism y — x along any map x’ — x is still an effective epimorphism.

Finally, we are ready to define a Galois category.

Definition 5.15. A Galois category is a category C such that:

(1) C admits finite limits and coproducts, and the initial object @) is empty.

(2) Coproducts are disjoint and distributive in C.

(3) Given an object z in C, there is an effective epimorphism 2’ — % (where * is the terminal object)
and a decomposition 2’ = ¥} U- - -Ux}, such that each map x x ] — x; decomposes as v xz; ~ | |g @]
for a finite set .S;.

The collection of all Galois categories and functors between them (which are required to preserve co-
products, effective epimorphisms, and finite limits) can be organized into a (2, 1)-category GalCat. Given
C,D € GalCat, we will let Fun®®(C, D) denote the groupoid of functors C — D in GalCat.

In other words, we might say that an object z € C is in elementary form if x ~ | |4 *. More generally, if
there exists a decomposition * =~ % L - - - L%y, such that, as an object of C ~ [], C/y,, ach y X, x; — *; is in
elementary form, we say that y is in mized elementary form. Then the defining feature of a Galois category
is that, locally, every object is in mixed elementary form.

Our first goal is to develop some of the basic properties of Galois categories. First, we need a relative
version of the previous paragraph.

Definition 5.16. Let C be a category satisfying the first two conditions of Definition (which we note
are preserved by passage to C, for any x € C). We say that a map f: x — y is setlike if there are finite sets
S,T such that « ~ | | %, y ~| |, * and the map  — y comes from a map of finite sets S — T.

For example, if y = %, then x — y is setlike if and only if z is in elementary form. Suppose z,y are in
elementary form, so that z ~ | |¢ * and y ~ | | *. Then a map x — y is not necessarily setlike. However, by
the disjointness of coproducts, it follows that the map | |¢* — | | * gives, for each s € S, a decomposition

of the terminal object * as a disjoint union of objects *gs) for each t € T. It follows that, refining these
decompositions, there exists a decomposition * ~ %; LI --- U %, such that the map  — y becomes setlike
after pulling back along *; — *. In particular, x — y is locally setlike. The same argument works if x,y are
disjoint unions of summands of the terminal object.

More generally, we have:

Proposition 5.17. Let f: x — y be any map in the Galois category C. Then there exists an effective
epimorphism t — * and a decomposition t ~ | |\ | t; such that the map © x t; = y X t; in Cjq, is setlike.
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PROOF. We can choose ¢ such that (z Ul y) X ¢ is in mixed elementary form: in particular, we have a
decomposition ¢ ~ ¢ LI---Ut, such that (x Lly) x ¢; is a disjoint union of copies of ¢; in C/;,. It follows that
x xt; — t; and y X t; — t; are objects in C/;, which are disjoint union of summands of copies of the terminal
object t; € Cj;,. Using the previous discussion, it follows that we can refine the ¢; further (by splitting into
summands) to make z — y setlike on each summand. ]

Corollary 5.18. Let C be a Galois category and let x € C. Then C;, is a Galois category.

PROOF. The first two axioms are evident. For the third, fix a map y — « in C (thus defining an object
of C/;). By Proposition we can find an object ' € C together with an effective epimorphism 2’ — *
such that y x 2’ — x x 2’ becomes, after decomposing z’ into a disjoint union of summands, setlike in C,,.
It follows that y — z, after base change by the effective epimorphism z’ x £ — =z, is in mixed elementary
form as an object of C/,r - O

The notion of an effective epimorphism is a priori not so well-behaved, which might be a cause for worry.
Our next goal is to show that this is not the case.

Proposition 5.19. A Galois category C admits finite colimits, which are distributive over pullbacks.

PRrROOF. Let K be a finite category; choose a map p: K — C/, for some object z € C. Since C/, is itself
a Galois category, we can replace C/, with C and show that if y € C is arbitrary, then the natural map

(11) lim(y x p(k)) = y x lim p(k),
K K

is an equivalence, and in particular the colimits in question exist.

There is one case in which the above would be automatic. Since C has finite coproducts, we can define
the product of a finite set with any object in C. Suppose there exists a diagram p: K — FinSet and an
object u € C such that p = p x u. For example, suppose that for every morphism in K, the image in C is
setlike; then this would happen. In this case, both sides of are defined and are given by y X u X hgq P
since finite coproducts distribute over pullbacks.

We will say that a diagram p: K — C is good if it arises from a p: K — FinSet and an u € C; the good
case is thus straightforward. If we have a finite decomposition of the terminal object * = | |"_, *; such that
the restriction p x, *; is good, then we say that p is weakly good. In this case, using C ~ [, C Jxis WE
conclude that is defined and holds.

We can reduce to the good (or weakly good) case via descent. There exists an effective epimorphism
x — * such that p x : K — C/, is weakly good. In fact, we can choose x such that = x | |, ., p(k) is in
mixed elementary form in C,, by assumption; this implies that the diagram p x z is weakly good in C/,.
Therefore, is defined and true after pull-back to C/,, and similarly after pull-back to C/;x...x;. Using
the expression C ~ Tot (C /IX___XI), it follows that must be true at each stage in the totalization, and
the respective colimits are compatible with the coface and coboundary maps, so that it is (defined and) true
in the totalization. O

Remark 5.20. In the above argument, we have tacitly used the following fact. Consider a category I and
an I-indexed family of categories (or co-categories) (C;);cr. Consider a functor p: K — @1 C;, where K is

a fixed simplicial set. Suppose each composite K 5 @1] Ci — C;, (for each i; € I) admits a colimit and
suppose these colimits are preserved by the various maps in I. Then p admits a colimit compatible with the
colimits in each C;.

Corollary 5.21. The composite of two effective epimorphisms in a Galois category C is an effective epi-
morphism. If x — y is any map in C and y' — y is an effective epimorphism, then x — y is an effective
epimorphism if and only if x X, y' — y' is one.

PROOF. Since a Galois category has finite colimits, which distribute over pull-backs, it follows by the
Barr-Beck theorem (and Proposition that a map x — y is an effective epimorphism if and only if it
is conservative. This is preserved under compositions. The second statement is proved similarly, since one
only has to check conservativity locally. O
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Proposition 5.22. Given a map f: x — y in the Galois category C, the following are equivalent:

(1) f is an effective epimorphism.
(2) f is a strict epimorphism.
(3) For every y' — y with y' nonempty, the pullback x Xy’ is nonempty.

ProoOF. All three conditions can be checked locally. After base-change by an effective epimorphism
t — % and a decomposition t ~ t; LI --- L t,, we can assume that the map x — vy is setlike, thanks to
Proposition In this case, the result is obvious. O

We now discuss a few facts about functors between Galois categories. These will be useful when we
analyze GalCat as a 2-category in the next section.

Proposition 5.23. Let C,D be Galois categories. A functor C — D in GalCat preserves finite colimits.

ProoF. This is proved as in Proposition any functor preserves colimits of good diagrams (in
the terminology of the proof of Proposition [5.19)), and after making a base change one may reduce to this
case. |

Next, we include a result that shows that GalCat (or, rather, its opposite) behaves, to some extent, like
a Galois category itself; at least, it satisfies a version of the first axiom of Definition [5.15

Definition 5.24. A Galois category C is connected if there exists no decomposition * =~ % %o with %7, %q
nonempty.

Proposition 5.25. Let C be a connected Galois category and let C1,Co be Galois categories. Then C1 x Co €
GalCat and we have an equivalence of groupoids

Fun®?(C; x Cy,C) = Fun®(C;, ¢) U Fun® (G, C),

The above equivalence of groupoids is as follows. Given a functor C; — C for i € {1,2}, we obtain a
functor C; x Cy3 — C by composing with the appropriate projection.

PROOF. The assertion that C; x Co € GalCat is easy to check. Consider a functor F': C; x Co — C in
GalCat. Note that every object (z,y) € C; x Cy decomposes as the disjoint union (z, ) U (0, y). For example,
in C; x Ca, the terminal object * = (x,*) decomposes as the union %; U %9 where %; is terminal in C; and
empty in Co, and *2 is terminal in C and empty in C;. It follows that F(x1) = () or F(*3) = () since C is
connected. If F(x1) = () and therefore F(*3) = *, then we have for z € Cy,y € Ca,

F((z,y) = F((z,y) x x2) ~ F((0,y)),
so that F' (canonically) factors through Cy. Similarly for the other case. O

More generally, let C be an arbitrary Galois category, and fix C1,Cy € GalCat. We find, by the same
reasoning,

(12) Fun“(C) x Cy) ~ |_| FunGal(Cl,C/*l) X FunGal(Cg,C/*Q),
*=3x1Ll*g
where the disjoint union is taken over all decompositions of the terminal object in C.
This concludes our preliminary discussion of the basic properties of Galois categories. In the next

subsection, we will give a complete classification of all Galois categories. For now, though, we describe a
basic method of extracting Galois categories from other sources.

Definition 5.26. A Galois context is an co-category C satisfying the first two axioms of Definition [5.15]
together with a class £ C C of morphisms such that:

(1) & is closed under composition and base change and contains every equivalence.
(2) Every morphism in £ is an effective epimorphism.
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(3) Given a cartesian diagram

/I —>

| |

y —Y

)

where y' — y € &, then x — y belongs to £ if and only if 2/ — 3’ does.
map x — y =~ y1 L ys belongs to £ if and only if = x, y; — y1 and = X, y2 — y2 belong to &£.
4) A bel € if and only if = x, d y bel &
(5) For any object « € C and any finite nonempty set S, the fold map | |¢ x — = belongs to £.

Given a Galois context (C, £), we say that an object = € C is Galoisable (or £-Galoisable) if there exists
amap y — * in £ such that the pullback z X y — y is in mixed elementary form in C/,, as in the discussion
at Definition In other words, we require that there is a decomposition y ~ y; U - - - Ly, such that each
T X y; — y; decomposes as a finite coproduct | |5 yi — vi.

Given a category satisfying the first two axioms of Definition the following result enables us to
extract a Galois category by considering the Galoisable objects.

Proposition 5.27. Let (C,€) be a Galois context. Then the collection of Galoisable objects in C (considered
as a full subcategory of C) forms a Galois category.

PRrOOF. Note first that the collection of Galoisable objects actually forms a category rather than an
oo-category: that is, the mapping space between any two Galoisable objects is (homotopy) discrete. More
precisely, if z € C is Galoisable and 2’ € C is arbtrary, then we claim that Home (2, x) is discrete. To see this,
we choose an effective epimorphism wuq U - - - Uu,, — * such that each map u; X x — x is in elementary form.
Using the expression C =~ Tot(C/q, x...xu, ), one reduces to the case where z is a (disjoint) finite coproduct of
copies of the terminal object *. In this case, Home(a',| | *) is the set of all S-labeled decompositions of z’
as direct sums of subobjects, using the expression C/_ . ~ [IsC/ ~1IsC.

Suppose y € C is a Galoisable object. We need to show that there is a Galoisable object ¢’ and an
E-morphism ¢’ — * such that the pullback y x t' — ¢’ is in mixed elementary form. By assumption, we know
that we can do this with some object ¢ € C with an £-morphism ¢ — *, but we do not have any control of ¢.
We will find a Galoisable choice of t' by an inductive procedure.

Define the rank of a Galoisable object y € C as follows. If y is mixed elementary, with respect to a
decomposition * o~ | [[L_, *; (with the %; nonempty) and y = | |;_; | |, *; for finite sets S;, we define the rank
to be sup, |:S;|. In general, we make a base change in C along some £-morphism ¢ — * (by a not necessarily
Galoisable object) to reduce to this case. In other words, to define the rank of y, we choose an £-morphism
t — * such that y x ¢t — ¢ is in mixed elementary form in C/,, and then consider the rank of that.

If the rank is zero, then y = . We now use induction on the rank of y. First, we claim that there is a
decomposition * =~ %1 LI*5 such that y — * factors through an £-morphism y — *;. (Meanwhile, y X, %2 = 0.)
To see this decomposition and claim, we can work locally on C ~ Tot(Csx...x¢) to reduce to the case in which
y is already in mixed elementary form, for which the assertion is evident. Thus we can reduce to the case
where y — * is an £-morphism.

Now consider the pullback y x ¥y — y. This admits a section, so we have y X y ~ y LI ¢ where c¢ is another
Galoisable object in C/,; to see that c exists, one works locally using ¢ to reduce to the mixed elementary
case. However, by working locally again, one sees that the rank of ¢ is one less than the rank of y. We can
reduce the rank one by one, splitting off pieces, to get down to the case where y = 0. O

In fact, the above argument shows that if € C is Galoisable, there exists a Galoisable y € C together
with a morphism y — * which belongs to £ such that z X y — y is in mixed elementary form.

Corollary 5.28. Let (C,&) be a Galois context. Then a map x — y between Galoisable objects in C is an
effective epimorphism in the category of Galoisable objects if and only if it belongs to E.

Proor. Working locally (because of the local nature of belonging to £, and the remark immediately
preceding the corollary), we may assume the map = — y is setlike, in which case it is evident. O
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5.3. The Galois correspondence. The Galois correspondence for groupoids gives an alternate de-
scription of the (2, 1)-category GalCat. To see this, we describe the building blocks in GalCat.

Example 5.29. Let G be a finite group. Then the category FinSetq of finite G-sets is a Galois category.
Only the last axiom requires verification. In fact, given any finite G-set T, we have an effective epimorphism
G — x such that T' x G, as a G-set, is a disjoint union of copies of G (since it is free).

This Galois category enjoys a convenient universal property, following [CIJF13].

Definition 5.30. Let C be a Galois category and let G be a finite group. A G-torsor in C consists of an
object x € C with a G-action such that there exists an effective epimorphism y — « such that y x x € C/,,
as an object with a G-action, is given by

yszuy,
G

where G acts on the latter by permuting the factors. For instance, « could be | | *, although z could also
be more complicated. The collection of G-torsors forms a full subcategory Torsg(C) C Fun(BG,C).

The Galois category FinSets has a natural example of a G-torsor: namely, G itself. The next result
states that it is universal with respect to that property.

Proposition 5.31. IfC is a Galois category, there is a natural equivalence between FunGal(FinSetg,C) and
the category Torsg(C) of G-torsors in C.

PrOOF. Any functor of Galois categories preserves torsors for any finite group. In particular, given a
functor F': FinSetg — C in GalCat, one gets a natural choice of G-torsor in C by considering F(G). Since
everything in FinSet¢ is a colimit of copies of G, the choice of F(G) determines everything else. This implies
that the functor from Fun®®(FinSetq,C) to G-torsors is fully faithful.

It remains to argue that, given a G-torsor in C, one can construct a corresponding functor FinSetg — C
in GalCat. In other words, we want to show that the fully faithful functor

Fun®®(FinSet, C) — Torsg(C),

is essentially surjective. However, writing C as a totalization of C/,...x,, one may assume the G-torsor is
trivial, in which case the claim is evident. (Il

More generally, we can build Galois categories from finite groupoids. This will be very important from
a 2-categorical point of view.

Definition 5.32. We say that a groupoid ¥ is finite if ¢4 has finitely many isomorphism classes of objects
and, for each object € ¢, the automorphism group Autg(x) is finite. The collection of all finite groupoids,
functors, and natural transformations is naturally organized into a (2, 1)-category Gpdg,.

In other words, a finite groupoid is a 1-truncated homotopy type such that 7 is finite, as is 71 with any
choice of basepoint.

Given a finite groupoid ¢, the category Fun(¥¢, FinSet) of functors from ¢ into the category of finite sets
forms a Galois category. This is a generalization of Example and follows from it since the categories
Fun(¥¢, FinSet) are finite products of the Galois categories of finite G-sets as G varies over the automorphism
groups. If we interpret ¢ as a 1-truncated homotopy type, then this is precisely the category of finite covering
spaces of ¢, or of local systems of finite sets on ¢.

It follows that we get a functor
Gpdg? — GalCat,
sending a finite groupoid ¢ to the associated functor category Fun(¥,FinSet). This is really a functor at
the level of (2, 1)-categories. A natural transformation between functors of finite groupoids gives a natural
transformation at the level of Galois categories.

In order to proceed further, we need a basic formal property of GalCat:

Proposition 5.33. The (2, 1)-category GalCat admits filtered colimits, which are computed at the level of
the underlying categories: the colimit of a diagram of Galois categories and functors between them (which
respect coproducts, finite limits, and effective epimorphisms) in the (2, 1)-category of categories is again a
Galois category.
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PRrROOF. Let F: I — GalCat be a filtered diagram of Galois categories. Our claim is that the colimit
HAJI F is a Galois category and the natural functors F(j) — h_r)n . F respect the relevant structure. We first
observe that hgl ; I has all finite limits and colimits, and the functors F(j) — li_n}I F respect those. This
holds for any filtered diagram of co-categories and functors preserving finite limits (resp. colimits) as a
formal consequence of the commutation of finite limits and filtered colimits in the co-category of spaces. For
example, every finite diagram in h_I)n . F factors through a finite stage. From this, the first two axioms of
Definition [E.15] follow.

Next, we want to claim that the functors F(j) — hﬂ s F respect effective epimorphisms. Once we’ve
shown this, the last axiom of Deﬁnitionvvill follow, since we know it at each stage F'(j). In fact, let z — y
be an effective epimorphism in F(j). Then, we need to check that pull-back along & — y is conservative and
respects finite colimits in li s F'; however, this follows since it holds in each F(j), since finite colimits and
pullbacks are preserved under F'(j) — hgl F

Finally, it follows from the previous paragraph that since every object in each F'(j) is locally in mixed
elementary form, with respect to effective epimorphisms in F(j), the same is true in hﬂ] F', since every
object in the colimit comes from a finite stage. O

It follows that we get a natural functor
Pro(Gpdg, )" ~ Ind(Gpdg>) — GalCat,

i.e., a contravariant functor from the (2, 1)-category Pro(Gpdg, )°P into the (2, 1)-category of Galois cate-
gories. We give this a name.

Definition 5.34. A profinite groupoid is an object of Pro(Gpdg)).

We will describe some features of the (2, 1)-category of profinite groupoids in the next subsection. In
the meantime, the main result can now be stated as follows.

Theorem 5.35 (The Galois correspondence). The functor Pro(Gpdg,)°? — GalCat is an equivalence of
2-categories.

PROOF. We first check that the functor is fully faithful. To do this, first fix finite groupoids ¢,%".
We want to compare the categories of functors Fun(¢,%’) and Fun®® (Fun(%¢’, FinSet), Fun(%, FinSet)). In
particular, we want to show that

(13) Fun(¥,%") — Fun®* (Fun(%’, FinSet), Fun(¥, FinSet)),

is an equivalence of groupoids. We can reduce to the case where ¢ has one isomorphism class of objects,
since both sides of send coproducts in ¢ to products of groupoids. We can also reduce to the case where
%’ has a single point, since if ¢ is connected, then both sides of take coproducts in ¢’ to coproducts.
This is clear for the left-hand-side. For the right-hand-side, note that coproducts in 4’ go over to products
in GalCat for Fun(¢’, FinSet). Now use Proposition to describe the corepresented functor for a product
in GalCat. In order to show that is an equivalence when ¢,%’ are finite groupoids, it thus suffices to
work with groups. We can do this extremely explicitly.

In the case of finite groups, given any two such G,G’, the groupoid of maps between the associated
groupoids has connected components given by the conjugacy classes of homomorphisms G — G’. Given
any f: G — G’, the automorphism group of f is the centralizer of the image f(G). To understand
Fun®*(FinSetq, FinSet¢), we can use Proposition m We need to describe the category of G’-torsors
in FinSetg. Any such gives a G'-torsor in FinSet by forgetting, so a G’-torsor in FinSet¢ yields in particular
a copy of G’ with G acting G’-equivariantly (i.e., by left multiplication by various elements of G'). It follows
that any torsor arises by considering a homomorphism ¢: G — G’ and using that to equip the G-torsor
G’ € FinSetg: with the structure of a G-set. A natural transformation of functors, or a morphism of tor-
sors, is given by a conjugacy in G’ between two homomorphisms G — G’: an automorphism of the torsor
comes from left multiplication by an element of G’ which centralizes the image of G — G’. This verifies full
faithfulness for finite groupoids, i.e., that is an equivalence if 4,9’ are finite.

Finally, we need to check that the full faithfulness holds for all profinite groupoids. That is a formal

consequence of the fact that Fun(¥, FinSet) is a compact object in GalCat for ¢4 a finite groupoid. If ¢ is
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connected, this is a consequence of the universal property, Proposition [5.31] since a torsor involves a finite
amount of data. In general, the observation follows from the connected case together with Proposition [5.25
(and the remarks immediately following, in particular )

To complete the proof, we need to show that the functor is essentially surjective: that is, every Galois
category arises from a profinite groupoid. For this, we need another lemma on the formal structure of
GalCat.

Lemma 5.36. GalCat admits finite limits, which are preserved under GalCat — Cat,.

PROOF. Since GalCat has a terminal object (the terminal category), it suffices to show that given a
diagram
c',

|

c"'——C
in GalCat, the category-theoretic fiber product is still a Galois category. Of the axioms in Definition [5.15
only the third needs checking. Note first that a map x — y in C’ x¢ C” is an effective epimorphism if it
is one in C" and C”. This follows from the fact that the formation of overcategories and totalizations are
compatible with fiber products of categories.

Let z be an object of the fiber product. We want to show that z is locally in mixed elementary form.
As before, we can perform induction on the rank of x (defined as the maximum of the ranks of the images in
C’,C"). The natural map = — * has the property that * ~ x; L %5 where & — x factors through an effective
epimorphism z — *;. In fact, we can construct these on C’,C” and they have to match up on C. So, we can
assume that = — x is an effective epimorphism. Now after base-change along x — *, we can find a section
of x x x — x and thus obtain a splitting of & x x (since we can in C’,C"). Using induction on the rank, we
can conclude as before. ]

Remark 5.37. The same logic shows that GalCat admits arbitrary limits, although they are no longer
preserved under the forgetful functor GalCat — Cats; one has to take the subcategory of the categorical
limit consisting of objects whose rank is bounded.

Let C be any Galois category, which we want to show lies in the image of the fully faithful functor
Pro(Gpdg, )°? — GalCat. In order to do this, we will write C as a filtered colimit of subcategories which do
belong to the image.

Let C be a Galois category. Then, if C is not the terminal category (i.e., if the map () — * in C is not an
isomorphism), there is a faithful functor FinSet — C which sends a finite set S to | |¢*. This is a functor
in GalCat and defines, for every nonempty Galois category C, a (non-full) Galois subcategory Ciyiy. In other
words, we take the objects which are in elementary form and the setlike maps between them. More generally,
if * decomposes as * = *; L -+ L %,, we can define a subcategory C{2, C C by writing C ~ ", C/,, and
taking the subcategory C{2, = [Ti_; (Cx, )triv-

Let y — * be an effective epimorphism and let y ~ y; U --- Uy, be a decomposition of y. We define a
map f:x — 2’ in C to be split with respect to y and the above decomposition if f x y; is setlike for each

i=1,2,...,n. Via descent theory, we can write this subcategory as

n n
¢ =Tot | [Jetmvz I cuty, = ...

i=1 i,j=1
In other words, this subcategory of C arises as an inverse limit (indexed by a cosimplicial diagram) of products
of copies of FinSet. Any such is the category of finite covers of a finite CW complex (presented by the dual
simplicial set) and is thus in the image of Pro(Gpdg,)°?. However, C is the filtered union over all such
subcategories as we consider effective epimorphisms y; U ...y, — * with the {y;} varying. It follows that
C is the filtered colimit in GalCat of objects which belong to the image of Pro(Gpdg,)°? — GalCat, and is
therefore in the image of Pro(Gpdg,,)°P itself. O

Theorem [5.35] enables us to make the following fundamental definition.
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Definition 5.38. Given a Galois category C, we define the fundamental groupoid or Galois groupoid
m<1C of C as the associated profinite groupoid under the correspondence of Theorem W

We next use the Galois correspondence to obtain a few technical results on torsors.

Corollary 5.39. The Galois categories FinSetg jointly detect equivalences: given a functor in GalCat,
F:C — D, if F induces an equivalence on the categories of G-torsors for each finite group G, then F is an
equivalence. In other words, if the map

(14) Torsg(C) — Torsg(D)

is an equivalence of groupoids for each G, then F is an equivalence.

PROOF. By Proposition [5.25} it follows that if is always an equivalence, then the map
Homgaicat (Fun(¥, FinSet), C) — Homgaicat (Fun(¥, FinSet), D),

is an equivalence for each finite groupoid ¢. Dualizing, and using the Galois correspondence, we find that
the map m<1D — m<1C of profinite groupoids has the property that

Homp,o(apdy, ) (T<1C,¥) — Homproapd,,, ) (T<1D;9)

is always an equivalence, for every finite groupoid ¢¥. However, we know that finite groupoids generate
Pro(Gpdg,,) under filtered inverse limits, so we are done. ]

Corollary 5.40. Let C be a Galois category and x € C be an object. Then there exists a G-torsory in C for
some finite group G such that x X y — y is in mized elementary form.

PROOF. We can reduce to the case where C = Fun(¥, FinSet) for ¢ a finite groupoid, since C is a filtered
colimit of such. Let ¢ have objects x1,...,Z, up to isomorphism with automorphism groups G, ...,G,.
Then, there is a natural Gy x - - - X Gy-torsor y on ¢ ~ | | | BG; (which on the ith summand is the universal
cover times the trivial [] ki Gj-torsor) such that any object « in C has the property that y x x is in mixed
elementary form. O

5.4. Profinite groupoids. Given Theorem it behooves us to discuss the 2-category Pro(Gpdg,,)
of profinite groupoids in more detail. We begin by studying connected components.

We have a natural functor mg: Gpdg, — FinSet sending a groupoid to its set of isomorphism classes
of objects. Therefore, we get a functor my: Pro(Gpdg,) — Pro(FinSet) which is uniquely determined by
the properties that it recovers the old my for finite groupoids and that it commutes with filtered inverse
limits. Recall that the category Pro(FinSet) is the category of compact, Hausdorff, and totally disconnected
topological spaces, under the realization functor which sends a profinite set to its inverse limit (in the
category of sets) with the inverse limit topology. It follows that the collection of “connected components”
of a profinite groupoid is one of these.

Remark 5.41. Note that mp: Gpdg, — FinSet does not commute with finite inverse limits, so that its
right Kan extension to Pro(Gpdg,) does not. While the reader might object that there should be a lim'
obstruction to the commutation of 7y and filtered inverse limits (of towers, say), we remark that lim*-terms
always vanish for towers of finite groups.

In practice, we will mostly be concerned with the case where the (profinite) set mp of connected compo-
nents is a singleton.

Definition 5.42. We say that a profinite groupoid is connected if its mg is a singleton. The collection of
connected profinite groupoids spans a full subcategory Pro(Gpdg,)=° C Pro(Gpdg,,).

In general, it will thus be helpful to have an explicit description of this profinite set. Recall that there
is an algebraic description of Pro(FinSet) given by Stone duality. Given a Boolean algebra B, the spectrum
SpecB of prime ideals (with its Zariski topology) is an example of a profinite set, i.e., it is compact, Hausdorft,
and totally disconnected. Recall now:

Theorem 5.43 (Stone duality). The functor B — SpecB establishes an anti-equivalence Bool®® ~ Pro(FinSet).
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The Galois correspondence in the form of Theorem |5.35|can be thought of as a mildly categorified version
of Stone duality. In particular, we can use Stone duality to describe 7y of a profinite groupoid.

Proposition 5.44. Let C be a Galois category. Then mo(n<1C) corresponds, under Stone duality, to the
Boolean algebra of subobjects x C *.

Let C be a Galois category. Given two subobjects x,y C * of the terminal object, we define their product
to be the categorical product X y. Their sum is the minimal subobject of * containing both x,y: in other
words, the image of x Ly — *. By working locally, it follows that this actually defines a Boolean algebra.

ProOF. In fact, if C is a Galois category corresponding to a finite groupoid, the result is evident. Since
the construction above sends filtered colimits of Galois categories to filtered colimits of Boolean algebras, we
can deduce it for any Galois category in view of Theorem [5.35 |

In practice, the Galois categories that we will be considering will be connected (in the sense of Defi-
nition . By Proposition it follows that a Galois category C is connected if and only if 7<;C is
connected as a profinite groupoid. In our setting, this will amount to the condition that certain commutative
rings are free from idempotents. With this in mind, we turn our attention to the connected case. Here we
will be able to obtain a very strong connection with the (somewhat more concrete) theory of profinite groups.

The 2-category Pro(Gpdg,,) has a terminal object x, the contractible profinite groupoid. Under the
Galois correspondence, this corresponds to the category FinSet of finite sets.

Definition 5.45. A pointed profinite groupoid is a profinite groupoid ¢ together with a map * —
% in Pro(Gpdg,). The collection of pointed profinite groupoids forms a 2-category, the undercategory
Pro(Gpdg, )+,

For example, let G be a profinite group, so that G is canonically a pro-object in finite groups. Applying
the classifying space functor to this system, we obtain a pointed profinite groupoid BG € Pro(Gpdg,) as
the formal inverse limit of the finite groupoids B(G/U) as U C G ranges over the open normal subgroups,
since each B(G/U) is pointed. By construction, the associated Galois category is @Uc o FinSetq,y, or

equivalently, the category of finite sets equipped with a continuous G-action (i.e., an action which factors
through G/U for U an open normal subgroup). We thus obtain a functor

B: Pro(FinGp) — Pro(Gpdg,, ).,
Observe that this functor is fully faithful, since the analogous functor B: FinGp — (Gpdg,, )., is fully faithful.

There is a rough inverse to this construction, given by taking the “fundamental group.” In general, if C
is an oo-category with finite limits, and C € C is an object, then the natural functor

PIO(CC/) — PIO(C)C/
is an equivalence of co-categories. In the case of C = Gpdg,,, we know that there is a functor
(15) Tt (Gpdﬁn)*/ - FlIle,

to the category FinGp of finite groups, given by the usual fundamental group of a pointed space, or more
categorically as the automorphism group of the distinguished point. Let Pro(FinGp) be the category of
profinite groups and continuous homomorphisms.

Definition 5.46. We define a functor 71 : Pro(Gpdg, )., — Pro(FinGp) from the 2-category of pointed
profinite groupoids to the category of profinite groups given by right Kan extension of , so that m
agrees with the old 7y on finite groupoids and commutes with filtered inverse limits.

Given a pointed finite groupoid ¢, we have a natural map
(16) Bmy (g) — g,
and by general formalism, we have a natural transformation of the form on Pro(Gpdg,, ).,
Proposition 5.47. Given an object 4 € Pro(Gpdyg,).,, the following are equivalent:

(1) 4 is connected, i.e., 109 is a singleton.
(2) The map Bm¥Y — ¢ is an equivalence in Pro(Gpdg,, ).,
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In particular, the functor B: Pro(FinGp) — Pro(Gpdg,)., is fully faithful with image consisting of the
pointed connected profinite groupoids.

PROOF. The second statement clearly implies the first: any BG for G a profinite group is connected, as
the inverse limit of connected profinite groupoids. We have also seen that the functor B is fully faithful, since
it is fully faithful on finite groups. It remains to show that if ¢ is a pointed, connected profinite groupoid,
then the map Bm¥ — ¢ is an equivalence.

For this, we write ¢ as a filtered limit lim . ¥;, where I is a filtered category indexing the ¢; and each ¥;
is a pointed finite groupoid. We know that ¢ is connected, though each ¥; need not be. However, we obtain
a new inverse system {Bm1%;} equipped with a map to the inverse system {%;} and we want to show that
the two inverse systems are pro-isomorphic. In order to do this, it suffices (by the Galois correspondence)
to show that to give a local system (of finite sets) on one is equivalent to giving a local system on the other.

To do this, we show that a local system of finite sets on ¢ can be represented by a local system on
some ¥; which is empty away from the connected component of the basepoint. In fact, a local system on
% is represented by a local system of finite sets on some ;. However, there exists j > i such that the
map ¥; — % sends all its connected components to the connected component of *; if not, we would have
|m0(¥4)| > 1 since the filtered inverse limit of nonempty finite sets is nonempty. In particular, pulling back
the local system to some j > ¢, we can assume that it is empty away from the connected component at the
basepoint. Since local systems on Bm¥; and local systems on &; which are empty away from the connected
component at the basepoint are equivalent, it follows that local systems on the inverse system {¥4;} (i.e., on
&) are equivalent to those on the system {Bm(G;)} (i.e., on Bm¥). O

Let 4 € Pro(Gpdg,) be a connected profinite groupoid. This means that the space of maps * — ¢ in
Pro(Gpdg,,) is connected, i.e., there is only one such map up to homotopy. (This is not entirely immediate,
but will be a special case of Proposition below.) Once we choose a map, we point ¢4 and then the data
is essentially equivalent to that of a profinite group in view of Proposition If we do not point ¢, then
what we have is essentially a profinite group “up to conjugacy.”

Proposition 5.48. Let G,G’" be profinite groups. Then the space Homp,o(apa,, )(BG, BG') is given as
follows:

(1) The connected components are in one-to-one correspondence with conjugacy classes of continuous
homomorphisms f: G — G'.

(2) The group of automorphisms of a given continuous homomorphism f: G — G’ is given by the
centralizer in G’ of the image of f.

In other words, if we restrict our attention to the subcategory Pro(Gpdg,)=° C Pro(Gpdg,,) consisting
of connected profinite groupoids, then it has a simple explicit description as a 2-category where the objects
are the profinite groups, maps are continuous homomorphisms, and 2-morphisms are conjugations.

PRrROOF. This assertion is well-known when G,G’ are finite groups: maps between BG and BG' in
Gpdg, are as above. The general case follows by passage to filtered inverse limits. Let G = l'glU G/U,G =
@V G'/V where U (resp. V) ranges over the open normal subgroups of G (resp. G’). In this case, we have

HomPro(Gpdﬁn) (BG, BG/) ~ @1 hﬂ HomGpdﬁn (B(G/U), B(G/V)),
vV U

and passing to the limit, we can conclude the result for G, G’ profinite, if we observe that the set of conju-
gacy classes of continuous homomorphisms G — G’ is the inverse limit of the sets of conjugacy classes of
continuous homomorphisms G — G'/V as V' C G ranges over open normal subgroups. (The assertion about
automorphisms, or conjugacies, is easier.)

To see this in turn, suppose given continuous homomorphisms ¢1,¢2: G — G’ such that, for every
continuous map v : G’ — G" where G” is finite, the composites 1) o ¢1,1 o ¢ are conjugate. We claim that
@1, 2 are conjugate. The collection of all surjections v: G’ — G” with G” finite forms a filtered system,
and for each 1, we consider the (finite) set Fy C G” of z € G” such that ¥ o ¢3 = x(h 0 ¢1)z~!. Since by
hypothesis each Fy is nonempty, it follows that the inverse limit is nonempty, so that ¢, @2 are actually
conjugate as homomorphisms G — G’. Conversely, suppose given for each ¥: G’ — G” with G” finite a
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conjugacy class of continuous maps ¢,: G — G”, and suppose these are compatible with one another; we
want to claim that there exists a conjugacy class of continuous homomorphisms ¢: G — G’ that lifts all the
¢y For this, we again consider the finite nonempty sets Gy, of all continuous homomorphisms G — G” in
the conjugacy class of ¢, and observe the inverse limit of these is nonempty. Any point in the inverse limit
gives a continuous homomorphism G — G” with the desired property. ]

6. The Galois group and first computations

Let (C,®,1) a stable homotopy theory. In this section, we will make the main definition of this paper,
and describe two candidates for the Galois group (or, in general, groupoid) of C. Using the descent theory
described in Section [3] we will define a category of finite covers in the co-category CAlg(C) of commutative
algebra objects in C. Finite covers will be those commutative algebra objects which “locally” look like direct
factors of products of copies of the unit. There are two possible definitions of “locally,” which lead to slightly
different Galois groups. We will show that these oo-categories of finite covers are actually Galois categories
in the sense of Definition Applying the Galois correspondence, we will obtain a profinite groupoid.

The rest of this paper will be devoted to describing the Galois group in certain special instances. In this
section, we will begin that process by showing that the Galois group is entirely algebraic in two particular
instances: connective E.-rings and even periodic E,.-rings with regular my. In either of these cases, one
has various algebraic tricks to study modules via their homotopy groups. The associated oco-categories of
modules turn out to be extremely useful building blocks for a much wider range of stable homotopy theories.

6.1. Two definitions of the Galois group. Let (C,®,1) be a stable homotopy theory, as before. We
will describe two possible analogs of “finite étaleness” appropriate to the categorical setting.

Definition 6.1. An object A € CAlg(C) is a finite cover if there exists an A’ € CAlg(C) such that:

(1) A’ admits descent, in the sense of Definition [3.18]
(2) A® A’ € CAlg(Modc(A")) is of the form []}_, A’[e; !], where for each 4, e; is an idempotent in A'.

The finite covers span a subcategory CAlg®"(C) c CAlg(C).

Definition 6.2. An object A € CAlg(C) is a weak finite cover if there exists an A’ € CAlg(C) such that:

(1) ®A’: C — C commutes with all homotopy limits.
(2) ®A’ is conservative.
(3) A® A’ € CAlg(Modc(A")) is of the form [}, A’[e; '], where for each 4, e; is an idempotent in A’.

The weak finite covers span a subcategory CAlg™“*Y(C) C CAlg(C).

Our goal is to show that both of these definitions give rise to Galois categories in the sense of the previous
section, which we will do using the general machine of Proposition Observe first that CAlg(C)°P satisfies
the first two conditions of Definition [5.15l

Lemma 6.3. Given C as above, consider the oco-category CAlg(C)°P and the collection of morphisms &
given by the maps A — B which admit descent. Then (CAlg(C)°P,&) is a Galois context in the sense of

Definition [5.26,

PROOF. The composite of two descendable morphisms is descendable by Proposition descendable
morphisms are effective epimorphisms by Proposition and the locality of descendability (i.e., the third
condition of Definition follows from the second part of Proposition The remaining conditions are
straightforward. |

Lemma 6.4. Given C as above, consider the oo-category CAlg(C)°P and the collection of morphisms &
given by the maps A — B such that the functor ® sB: Mod¢(A) — Mod¢(B) commutes with limits and is
conservative. Then (CAlg(C)°P,€) is a Galois context in the sense of Definition [5.26,

PROOF. It is easy to see that & satisfies the first axiom of Definition and we can apply Barr-Beck-
Lurie to see comonadicity of @ 4 B (i.e., the second axiom). The fourth and fifth axioms are straightforward.
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Finally, suppose A — B is a morphism in CAlg(C) and A — A’ belongs to &, i.e., tensoring ®4A’
commutes with limits and is conservative. Suppose A" — B’ ©f g 4 B has the same property. Then we
want to claim that A — B belongs to &.

First, observe that ® 4 B is conservative. If M € Mod¢(A) is such that M® 4B ~ 0, then (M @4 A")®@ 4 B’
is zero, so that M ®4 A’ is zero as A’ — B’ belongs to &, and thus M = 0. Finally, we need to check the
claim about ® 4B commuting with limits. In other words, given {M;} € Mod¢(A), we need to show that
the natural map

B®a HMz — H(Mz ®4a B)
is an equivalence. We can do this after tensoring with A’, so we need to see that
A ®sB®y HM’ — A ®a H(Ml ®a B)
is an equivalence. However, since tensoring with A’ commutes with limits, this map is
B'ow [[(Miowad) = [[(M; @4 &) 040 B,
which is an equivalence since ® 4B’ commutes with limits by assumption. O

The basic result of this section is the following.

Theorem 6.5. GivenC, CAlg®"(C)°P and CAlg™°°"(C)°P are Galois categories, with CAlg® (C) C CAlg™ v (C).
If 1 € C is compact, then the two are the same.

PROOF. This follows from Proposition [5.27]if we take CAlg(C)°P as our input co-category. As we checked
above, we have two candidates for £, both of which yield Galois contexts. The Galoisable objects yield either
the finite covers or the weak finite covers.

Next, we need to note that a finite cover is actually a weak finite cover. Note first that either a finite
cover or a weak finite cover is dualizable, since dualizability can be checked locally in a limit diagram of
symmetric monoidal co-categories. However, the argument of Proposition (or the following corollary)
shows that, given a finite cover A € CAlg(C), we can choose the descendable A’ € CAlg(C) such that A® A’
is in mixed elementary form so that A’ itself is a finite cover: in particular, so that A’ is dualizable. This
means that we can choose A’ so that ® A’ commutes with arbitrary homotopy limits.

Finally, we need to see that the two notions are equivalent in the case where 1 is compact. For this, we
use the reasoning of the paragraph to argue that if A € CAlg™“°¥(C), then there exists a A’ € CAlg"“°V(C)
such that the dual to 1 — A’ is a distinguished effective epimorphism (i.e., tensoring with A’ is conservative

and commutes with homotopy limits) and such that A’ = A ® A’ is in mixed elementary form. However, in
this case, A’ is dualizable, as an element of CAlg™ “*Y(C), so it admits descent in view of Theorem |

Proposition 6.6. Let F': C — D be a morphism of stable homotopy theories, so that F induces a functor
CAlg(C) — CAlg(D). Then F carries CAlg®¥(C) into CAlg®" (D) and CAlg™“**(C) into CAlg™“**(D).

PrOOF. Let A € CAlg™“V(C). Then there exists A’ € CAlg™“°(C), which is a G-torsor for some
finite group G, such that A ® A’ is a finite product of localizations of A" at idempotent elements, in view of
Corollary [5.40} Therefore, F(A)® F(A’) is a finite product of localizations of F(A’) at idempotent elements.

Now F(A’) € CAlg(D) is dualizable since A’ is, so tensoring with F'(A’) commutes with limits in D.
If we can show that tensoring with F(A’) is conservative in D, then it will follow that F(A) satisfies the
conditions of Definition In fact, we will show that the smallest ideal of D closed under arbitrary colimits
and containing F'(A’) is all of D. This implies that any object Y € D with Y ® F(A’) ~ 0 must actually be
contractible.

To see this, recall that A’ has a G-action. We have a norm map
Ao — AMY ~ 1,
which we claim is an equivalence (Lemma below). After applying F', we find that F(A’),e ~ 1, which
proves the claim and thus shows that tensoring with F'(A’) is faithful.

If A € CAlg®¥(C), then we could choose the torsor A’ so that it actually belonged to CAlg®™(C) as well.
The image F(A’) thus is a descendable commutative algebra object in D since descendability is a “finitary”
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condition that does not pose any convergence issues with infinite limits. So, by similar (but easier) logic, we
find that F'(A) € CAlg®" (D). O

Lemma 6.7. Let C be a stable homotopy theory and let A € CAlg™°V(C)°P be a G-torsor, where G is a
finite group. Then the norm map Apg — A"Y ~ 1 is an equivalence.

PROOF. It suffices to prove this after tensoring with A; note that tensoring with A is conservative and
commutes with all homotopy limits. However, after tensoring with A, the G-action on A becomes induced,
so the norm map is an equivalence. |

Finally, we can make the main definition of this paper.

Definition 6.8. Let (C,®,1) be a stable homotopy theory. The Galois groupoid 7<1(C) of C is the
Galois groupoid of the Galois category CAlg®™"(C)°P. The weak Galois groupoid 7%¥$%(C) is the Galois
groupoid of CAlg"“*(C)°?. When 1 has no nontrivial idempotents, we will write m;(C), 7}*#<(C) for the
Galois group (resp. weak Galois group) of C with the understanding that these groups are defined “up
to conjugacy.”

As above, we have an inclusion CAlg™“*Y(C) C CAlg®"(C) of Galois categories. In particular, we obtain
a morphism of profinite groupoids

(17) TEPR(C) — m<1(C).

The dual map on Galois categories is fully faithful. In particular, if C is connected, so that 1, 712 can be

represented by profinite groups, the map is surjective. Moreover, by Theorem (6.5} if 1 is compact,
is an equivalence.

In the following, we will mostly be concerned with the Galois groupoid, which is more useful for com-
putational applications because of the rapidity of the descent. The weak Galois groupoid is better behaved
as a functor out of the oco-category of stable homotopy theories. We will discuss some of the differences
further below. The weak Galois groupoid seems in particular useful for potential applications in K (n)-local
homotopy theory where 1 is not compact. Note, however, that the Galois groupoid depends only on the
2-ring of dualizable objects in a given stable homotopy theory, because the property of admitting descent (for
a commutative algebra object which is dualizable) is a finitary one. So, the Galois groupoid can be viewed
as a functor 2-Ring — Pro(Gpdg, )°P.

Definition 6.9. We will define the Galois group(oid) of an E.-ring R to be that of Mod(R). Note that
the weak Galois group(oid) and the Galois group(oid) of Mod(R) are canonically isomorphic, by Theorem

In any event, both the profinite groupoids of map to something purely algebraic. Given a finite
étale cover of the ordinary commutative ring Ry = moEnd¢ (1), we get a commutative algebra object in C.

Proposition 6.10. Let R}, be a finite étale Ry-algebra. The induced classically étale object of CAlg(C) is a
finite cover, and we have a fully faithful imbedding

Covspecr, C CAlg™V(C)°P,
from the category COV(éf)eCRO of schemes finite étale over SpecRy and the opposite to the category CAlg™ (C).

PrROOF. We can assume that C = Mod(R) for R an E-ring, because if R = End¢(1), we always
have an imbedding Mod”(R) C C and everything here happens inside Mod”(R) anyway. It follows from
Theorem that we have a fully faithful imbedding Covspecr, C CAlg(C)°P, so it remains only to show
that any classically étale algebra object coming from a finite étale Ryp-algebra Ry is in fact a finite cover.
However, we know that there exists a finite étale Ry-algebra R such that:

(1) Ry is faithfully flat over Ry.
(2) Ry ®r, Ry is the localization of [[¢ Rf at an idempotent element, for some finite set S.

We can realize Ry, Rj topologically by E.-rings R, R” under R. Now R” admits descent over R/,
as a finite flat R-module, and R’ ®g R" is the localization of [[¢ R” at an idempotent element, so that
R’ € CAlg®(Mod(R)). O
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The classically étale algebras associated to finite étale Ry-algebras give the “algebraic” part of the Galois
group and fit into a sequence

(18) ek (C) — 71 (C) — 7$'SpecR.

It is an insight of [Rog08] that the second map in is not an isomorphism: that is, there are examples
of finite covers that are genuinely topological and do not appear so at the level of homotopy groups. We will
review the connection between our definitions and Rognes’s work in the next section.

6.2. Rognes’s Galois theory. In [Rog08], Rognes introduced the definition of a G-Galois extension
of an E,-ring R for G a finite group. (Rognes also considered the case of a stably dualizable group, which
will be discussed only incidentally in this paper.) Rognes worked in the setting of E-local spectra for E a
fixed spectrum. The same definition would work in a general stable homotopy theory. In this subsection, we
will connect Rognes’s definition with ours.

Definition 6.11 (Rognes). Let (C,®,1) be a stable homotopy theory. An object A € CAlg(C) with the
action of a finite group G (in CAlg(C)) is a G-Galois extension if:

(1) The map 1 — A"Y is an equivalence.
(2) The map A® A — [][, A (given informally by (a1,az2) — {a1g(az2)}4eq) is an equivalence.

We will say that A is a faithful G-Galois extension if further tensoring with A is conservative.

General G-Galois extensions in this sense are outside the scope of this paper. In general, there is no
reason for a G-Galois extension to be well-behaved at all with respect to descent theory. By an example of
Wieland (see [Rog]), the map C*(BZ/p;F,) — F, given by evaluating on a point is a Z/p-Galois extension,
but one cannot expect to do descent along it in any manner. However, one has:

Proposition 6.12. A faithful G-Galois extension in C is equivalent to a G-torsor in the Galois category
CAlg™ v (C).

This in turn relies on:

Proposition 6.13 ([Rog08| Proposition 6.2.1] ). Any G-Galois extension A of the unit is dualizable.

The proof in [Rog08] is stated for the E-localization of Mod(A) for A an E-ring, but it is valid in any
such setting.

PROOF OF PROPOSITION [6.12] A G-torsor in CAlg™“°V(C) is, by definition, a commutative algebra
object A with an action of G such that there exists an A’ € CAlg(C) such that ® A’ is conservative and
commutes with limits, with A’ ® A ~ [[, A’ as an A’-algebra and compatibly with the G-action. This
together with descent along 1 — A’ implies that the map 1 — A" is an equivalence. Similarly, the map
A®A =[], A is well-defined in C and becomes an equivalence after base-change to A" (by checking for the
trivial torsor), so that it must have been an equivalence to begin with.

Finally, if 1 — A is a faithful G-Galois extension in the sense of Definition [6.11} then A is dualizable by
Proposition [6.13] so that ® A commutes with limits. Moreover, ® A is faithful by assumption. Since A ® A
is in elementary form, it follows that A € CAlg”“°V(C) and is in fact a G-torsor. O

The use of G-torsors will be very helpful in making arguments. For example, given a Galois category,
any object is a quotient of a G-torsor for some finite group G; in fact, understanding the Galois theory is
equivalent to understanding torsors for finite groups.

Corollary 6.14. A G-torsor in the Galois category CAlg® (C) is equivalent to a G-Galois extension in C,
1 — A, such that A admits descent.

PROOF. Given a G-torsor in CAlg®V(C), it follows easily that it generates all of C as a thick tensor
ideal, since descendability can be checked locally and since a trivial torsor is descendable. Conversely, if A is
a G-Galois extension with this property, then A is a finite cover of the unit: we can take as our descendable
commutative algebra object (required by Definition A itself. O
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Corollary 6.15. If |G| is invertible in moEnd(1), then a G-torsor in CAlg™“Y(C) actually belongs to
CAlg®™(C). In particular, if Q C moEnd(1), then the two fundamental groups are the same: s an
isomorphism.

PROOF. In any stable co-category D where |G| is invertible (i.e., multiplication by |G| is an isomorphism
on each object), then for any object X € Fun(BG,C), X"“ is a retract of X. In fact, the composite

XM 5 X o Xy N XhC

is an equivalence, where N is the norm map.

In particular, given a G-torsor A € CAlg"°*¥(C), we have 1 ~ A"“ so that 1 is a retract of A: in
particular, the thick tensor ideal A generates contains all of C, so that (by Corollary [6.14) it belongs to
CAlg®(C). This proves the first claim of the corollary.

Finally, if @ C moEnd(1), then fix a weak finite cover B € CAlg"“°V(C). There is a G-torsor A €
CAlg"™“°V(C) for some finite group G such that A ® B is a localization of a product of copies of A at
idempotent elements. Since the thick tensor ideal that A generates contains all of C by the above, it follows
that B is actually a finite cover. (|

6.3. The connective case. The rest of this paper will be devoted to computations of Galois groups.
These computations are usually based on descent theory together with results stating that we can identify
the Galois theory in certain settings as entirely algebraic. Our first result along these lines shows in particular
that we can recover the classical étale fundamental group of a commutative ring. More generally, we can
describe the Galois group of a connective E,-ring purely algebraically.

Theorem 6.16. Let A be a connective Eo-ring. Then the map w3 (Mod(A)) — w§*SpecmoA is an equiva-
lence; that is, all finite covers or weak finite covers are classically étale.

Remark 6.17. This result, while not stated explicitly in [Rog08], seems to be folklore. One has the
following intuition: a connective E.-ring consists of its 7y (which is a discrete commutative ring) together
with higher homotopy groups 7;,7 > 0 which can be thought of as “fuzz,” a generalized sort of nilthickening.
Since nilpotents should not affect the étale site, we would expect the Galois theory to be invariant under the
map A — T<pA in this case.

PROOF. Suppose first A is simply a field k, considered as a discrete E,-ring. In this case, given a
G-Galois extension kK — B, we can use the Kiinneth formula to get

(19) mo(B) @ m(B) ~ [ [ 7 (B).
G

Since B is perfect as a k-module, B is (—r)-connective for some r > 0. But now forces B to be
concentrated in degree zero, so moB is a commutative k-algebra such that moB ®j moB =~ [[, moB. This
implies that myB is a product of finite separable extensions of k: that is, it is étale over k in the sense of
ordinary commutative algebra.

Now consider A connective. The argument was explained for m9A noetherian in [MM13], Example 5.5].
We will reproduce it here. The idea is that over a connective Eo.-ring A, one has a good theory of flatness
(developed in [Lurl2l 8.2.2]) of A-modules. Recall that if A is any Eo-ring, an A-module M is called flat
if mgM is a flat mpA-module and the map 7.(A) @xoa ToM — 7. M is an isomorphism. Our goal is to show
that any G-Galois extension of A is flat. This implies in particular that any G-Galois extension A — B must
be actually étale on homotopy groups (since we would have mgB ®x,4 m0B ~ [[, m0B).

However, in the connective case, one has an especially good theory of flatness.
Proposition 6.18 ([Lurl2l 8.2.2.15]]). If M is an A-module with A a connective Eo-ring, then M is flat
if and only if:

(1) M is (—k)-connective for some k > 0.
(2) M @4 moA is discrete and flat over myA.

If my A is noetherian, then it suffices to assume that for every map A — k, where k is a field, then the
tensor product M ® 4 k is discrete. This follows from Proposition together with an elementary flatness
criterion for modules over a noetherian ring.
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Proposition 6.19. If R is a (discrete) noetherian ring, then a discrete R-module N is flat if and only if
Tor;(k(p), N) =0 for i > 0 and for each of the residue fields k(p) of the localizations Ry, p € SpecR.

PROOF. Throughout this proof, for simplicity, we write R-module for discrete R-module. We may
assume that R is local with maximal ideal m, since flatness can be checked locally. In order to show that N
is flat, we need to show that Tor;(M,N) = 0 for i > 0 and for M any R-module. By noetherian induction,
we may assume that M[z~1] is flat for each z € m.

By assumption, we are given that Tor;(M,N) = 0 for i > 0 and N = R/m. It follows that the same
holds for N any finite length R-module, or more generally any module which is all m-power torsion: that is,
any R-module (possibly infinitely generated) which is supported on {m} C SpecR.

Now let N be any R-module. We will show that Tor;(M,N) = 0 for i > 0 by noetherian induction on
SuppNV, the closure of the support of N. When SuppN = {m}, we are done as above. Suppose SuppN is
larger, and is not contained in some V' (z) for € m. Consider the exact sequences

0— N(z*®) = N = N/N(z>) =0, 0-— N/N(z*)— N[z~'] = N[z"']/(N/N(z>)) - 0,

where N (z°°) contains all the z-power torsion in N. By the inductive hypotheses, we have
Tor;(M, N[z~']) = Tor;(M, N[z~ ']/(N/N(z>))) = Tor;(M, N(z>)) =0, i > 0.

Indeed, N(z*°) and N[z~!]/(N/N(2*)) are supported on the smaller closed subset V(z) N SuppN and
M[z~1] is flat. Thus, by use of long exact sequences, we get

Tor;,(M,N) =0, >0,
as desired. 0

Now let A be a connective E-ring with mgA noetherian. Let G be a finite group and let A — B be a
G-Galois extension of A. We would like to show that it is flat. By the above discussion, it suffices to show
that, for any map A — k where k is a field, the base-change B ® 4 k is discrete. However, this base-change
is a G-Galois extension of the field k, and therefore concentrated in 7y by the discussion above.

Finally, we need to explain how to remove the hypothesis that myA be noetherian. For this, we observe
that the oo-category CAlg(Sps) of connective Eo-rings is compactly generated; the compact objects are
the retracts of those built via a finite cell decomposition in CAlg(Sp~(). Now, a finitely presented object
in CAlg(Sps,) always has 7y given by a finitely presented Z-algebra, which is necessarily noetherian. We
will show below (Theorem that the Galois theory of E..-rings commutes with filtered colimits. This
enables us to reduce to the case where 7 is noetherian, which we have handled above. O

The above argument illustrates a basic technique one has: one tries, whenever possible, to reduce to
the case of E..-rings which satisfy Kiinneth isomorphisms. In this case, one can attempt to study G-Galois
extensions using algebra.

Example 6.20. The Galois group of Sp is trivial, since Sp is the co-category of modules over the sphere
S9, and the étale fundamental group of mo(SY) ~ Z is trivial by Minkowski’s theorem that the discriminant
of a number field is always > 1 in absolute value.

6.4. Galois theory and filtered colimits. In this subsection, we will complete the loose end in
Theorem by proving that Galois theory behaves well with respect to filtered colimits.

Theorem 6.21. The functor A — CAlg®¥(Mod(A)),CAlg — Cats commutes with filtered colimits. In
particular, given a filtered diagram I — CAlg, the map

WSlMOd(li%In AIL) — @ﬂglMOd(Ai),
I I

is an equivalence of profinite groupoids.

Theorem will be a consequence of some categorical technology together with a little obstruction
theory for structured ring spectra, and is a form of “noetherian descent.” To prove it, we can work with
G-torsors in view of Corollary Given an E,-ring A € CAlg, we let Galg(A) be the category of faithful
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G-Galois extensions of A: that is, the category of G-torsors in CAlg®V(A). We need to show that given a
filtered diagram {A;} of E.-rings, the functor

h_H)l Galg (Az) — Galg(li_n)l A,),

is an equivalence of categories: i.e., that it is fully faithful and essentially surjective. As we will explain, full
faithfulness is a consequence of general category theory, though essential surjectivity is a little harder. We
start by showing that faithful Galois extensions are compact E.-algebras.

Lemma 6.22. Let A — B be a faithful G-Galois extension. Then B is a compact object in the co-category
CAlgy, of Ex-algebras over A.

PROOF. First, recall that if A — B is a classically étale extension, then the result is true. In fact, if
A — B is classically étale, then for any E..-A-algebra A’, the natural map

HomCAlgA/ (B7 AI) — HomRingwoA/ (WoB, 7T0AI),
is an equivalence. Moreover, mgB, as an étale mgA-algebra, is finitely presented or equivalently compact in
Ring, 4/. The result follows for an étale extension.

Now, a Galois extension need not be classically étale, but it becomes étale after an appropriate base
change, so we can use descent theory. Recall that we have an equivalence of symmetric monoidal co-categories
Mod(A) ~ Tot (Mod(B) 2 Mod(B®a B)= ... ) .

Upon taking commutative algebra objects, we get an equivalence of co-categories

—
CAlg,, ~ Tot (CAlgB/jCAlgB®AB/:>> )

The object B € CAlg,, becomes classically étale, thus compact, after base-change along A — B. We may
now apply the next sublemma to conclude. O

Sublemma. Let C~* € Pr¥ be a presentable oo-category and C® a cosimplicial object in Pr% with an equiv-
alence of co-categories
C~' ~ Tot(C®).
Suppose that x € C™1 is an object such that:
o The image x* of x in C*,i >0 is compact for each i.
o There exists n such that the image x* of x in each C* is n-cotruncated in the sense that
Homgi (z*,-): C* = S

takes values in the subcategory T<,S C S of n-truncated spaces. (This follows once z° is n-

cotruncated. )

Then z is compact (and n-cotruncated) in C~1).

ProoF. Consider a filtered oo-category I and a functor ¢: I — C~!. We want to show that the map

(20) hﬂHomc—l(x,gﬁ(y)) - Homc_1(x,@¢(y)),
yel
is an equivalence. Now, given objects w,z € C~1, then the natural map
Home (w, z) — TotHomges (w*®, 2°)

is an equivalence, where for each i > 0, w?, z* are the objects in C? that are the images of w, 2.

Therefore, it follows that Home-1(x,-): C~! — S is the totalization of a cosimplicial functor C~* — 8
given by Homee (2°,-*). Each of the terms in this cosimplicial functor, by assumption, commutes with filtered
colimits and takes values in n-truncated spaces. The sublemma thus follows because the totalization functor

Tot: Fun(A, 7<,S) — S,

lands in 7<,,S, and commutes with filtered colimits: a totalization of n-truncated spaces can be computed
by a partial totalization, and finite limits and filtered colimits of spaces commute with one another. O
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Next, we prove a couple of general categorical lemmas about compact objects in undercategories and
filtered colimits.

Lemma 6.23. Let C be a compactly generated, presentable co-category and let C¥ denote the collection
of compact objects. Then, for each x € C, the undercategory C,, is compactly generated. Moreover, the
subcategory (C,/)“ is generated under finite colimits and retracts by the morphisms of the form x — x Uy
foryeC«.

PROOF. To prove this, recall that if D is any presentable co-category and £ C D is a (small) subcategory
of compact objects, closed under finite colimits, then there is induced a map in Pr’”

Ind(&) — D,

which is an equivalence of co-categories precisely when £ detects equivalences: that is, when a map x — y in
D is an equivalence when Homyp (e, 2) — Homp(e, y) is a homotopy equivalence for all e € £. Indeed, in this
case, it follows that Ind(£) — D is a fully faithful functor, which imbeds Ind(€) as a full subcategory of D
closed under colimits. But any fully faithful left adjoint whose right adjoint is conservative is an equivalence
of co-categories. This argument is a very slight variant of Proposition 5.3.5.11 of [LurQ9].

Now, we apply this to C,,. Clearly, the objects x — x Uy in C,,, for y € C*, are compact. Since
HOHICI/ ('T U Y, Z) = HomC(ya Z)a

it follows from the above paragraph if C is compactly generated, then the x — xUy in C,, detect equivalences
and thus generate C,, under colimits. More precisely, if & C C, is the full subcategory closed under finite
colimits generated under the 2 — x Uy,y € C¥, then the natural functor Ind(£) — C,, is an equivalence.
Since (Ind(€))¥ is the idempotent completion of £ (Lemma 5.4.2.4 of [Lur09]), the lemma follows.

O

Let C be a compactly generated, presentable co-category. We observe that the association z € C + (C,/)*
is actually functorial in z. Given a morphism x — y, we get a functor

Cay = Cyy

given by pushout along  — y. Since the right adjoint (sending a map y — z to the composite © — y — 2)
commutes with filtered colimits, it follows that C,, — C,, restricts to a functor on the compact objects. We
get a functor

®:C — Cate, 1+ (Cyy)”.

Our next goal is to analyze the extent to which this commutes with filtered colimits.
Lemma 6.24. Then ® has the property that for any filtered diagram x: I — C, the natural functor
(21) lim ®(z;) — ®(lim ),
I I
s fully faithful, and exhibits @(@I x;) as the idempotent completion of hﬂ[ D(x;).

Proor. This is a formal consequence of the definition of a compact object. In fact, an element of
HA’II ®(x;) is represented by an object i € I and a map x; — y; that belongs to (C,,,)*. We will denote this
object by (¢,y;). This object is the same as that represented by x; — y; Uy, ; for any map ¢ — j in I.

Given two such objects in hﬂ] ®(x;), we can represent them both by objects x; — y;, z; — 2; for some
index ¢. Then

Homiy ((2,9:), (1, 21)) = lim Home, |, (y;, 2;),
J€L;y
where y;, z; denotes the pushforwards of y;, 2; along z; — z;.
Let x = @1 z;, and let y, z denote the pushforwards of y;, z; all the way along z; — x. Then our claim
is that the map
liﬂ Homcmj/ (Y4, 25) — Home,_ ,(y, 2)
J€L;y
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is an equivalence. Now, we write
Home, , (y,z) ~ Home, , (yi,2)
~ Home,,, (3, lim ;)
JEL;y
=~ lim Home,  (yi;2))
JEL;)
= h_I>n Homcm]./ (yj? Zj)a
J€l;y
and we get the equivalence as desired. To see that establishes the right hand side as the idempotent
completion of the first, we use the description of compact objects in C,,. ]

Corollary 6.25. Hypotheses as above, the functor ¥ : x — (Cm/)“’fo sending x to the category of 0-
cotruncated, compact objects in (Cy, has the property that the natural functor

I
is fully faithful.

This follows from the previous lemma, because 0-cotruncatedness of an object y is equivalent to the
claim that the map S! ® y — y is an equivalence.

PrROOF OF THEOREM [6.2]] For A an E,.-ring, let (CAlgA/)“”SO be the (ordinary) category of 0-
cotruncated, compact E.,-A-algebras; this includes any finite cover of A, for example, since finite covers
of A are locally étale. Then we have a fully faithful inclusion

Galg(A) C Fun(BG, (CA]gA/)w,SO).

The right-hand-side has the property that it almost commutes with filtered colimits in A — at least, in view
of Corollary for any filtered diagram A: I — CAlg, the functor

hél’l Gal(;' (A,L) — Galg(hgn Ai);

iel iel
is fully faithful. Although BG is not compact in the oo-category of oo-categories, the truncation to n-

categories for any n is: BG can be represented as a simplicial set with finitely many simplices in each
dimension.

Moreover, given a G-Galois extension B of A = i s A;, there exists ¢ and a compact, 0-cotruncated
A;-algebra B; with a G-action, such that A — B is obtained by base change from A; — B;. It now suffices
to show that A; — B; becomes G-Galois after some base change A; — A;.

Now, the condition to be faithfully G-Galois has two parts:

(1) B; ®a; Bj = [I Bj should be an equivalence.
(2) A; — Bj should be descendable (or at least faithful).

The first condition is detected at a “finite stage.” The second condition is not quite so well adapted.

Unfortunately, we do not know how to use this line of argument alone to argue that the A; — B;’s are
faithful G-Galois for some j, although we suspect that it is possible.

Instead, we use some obstruction theory. The map A — B exhibits B as a perfect A-module. For any
E;-ring R, let Mod®(R) be the stable oo-category of perfect R-modules. Then the natural functor

lim Mod® (4;) — Mod*(A),
I

is an equivalence of oo—categoriesﬁ It follows that we can “descend” the perfect A-module B to a perfect
Aj-module BJ'» for some j (asymptotically unique), and we can descend the multiplication map B®4 B — B
(resp. the unit map A — B) to B} ®a; B} — B’ (resp. A; — B}). We can also assume that homotopy
associativity holds for j “large.” The G-action on B in the homotopy category of perfect A-modules descends

40ne does not need to worry about idempotent completeness here because we are in a stable setting, and any self-map
e: A — A with e? ~ e can be extended to an idempotent.
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to an action on B; in the homotopy category of perfect Aj-modules, and the equivalence B ®4 B ~ [[, B
descends to an equivalence B} ®4, B} =~ [[ B’;. Finally, the fact that the thick subcategory that B generates
contains A can also be tested at a finite stage.

The upshot is that, for j large, we can “descend” the G-Galois extension A — B to a perfect A;-
module B;- with the portion of the structure of a G-Galois extension that one could see solely from the
homotopy category. However, using obstruction theory one can promote this to a genuine Galois extension.
In Theorem below, we show that B’ can be promoted to an E-algebra (in A;j-modules) for j > 0 with
a G-action, which is a faithful G-Galois extension.

It follows that the Bj lift B to A; for j > 0, and even with the G-action (which is unique in a faithful
Galois extension; see Theorem 11.1.1 of [Rog08]). O

Theorem 6.26. Let A’ be an Eo-ring, and let B’ be a perfect A'-module such that the thick subcategory
generated by B’ contains A’. Suppose given:

(1) A homotopy commutative, associative and unital multiplication B’ ® y» B' — B’.
(2) A G-action on B’ in the homotopy category, commuting with the multiplication and unit maps,
such that the map B’ @ 4 B — [[, B’ is an equivalence of A-modules.

Then B’ has a unique Eo-multiplication extending the given homotopy commutative one, and A — B 1is
faithful G-Galois (in particular, the G-action in the homotopy category extends to a strict one of Eo,-maps
on B).

Here we use an argument, originally due to Hopkins in a different setting, that will be elaborated upon
further in [HM]; as such, we give a sketch of the proof.

PROOF. We use the obstruction theory of [Ang04] to produce a unique E;-structure. Since B’ ® 4» B’
is a finite product of copies of B’, it follows that B’ satisfies a perfect universal coefficient formula in the
sense of that paper. The obstruction theory developed there states that the obstructions to producing an

E;-structure lie in Ethf’(_B%A, 5y (B, By) for n > 4, and the obstructions to uniqueness in the groups

Eth;z(;;@A,B,)(B;, B.) for n > 3. The hypotheses of the lemma imply that B, is a projective m.(B’ ® 4 B')-

module, though, so that all the obstructions (both to uniqueness and existence) vanish.

Our next goal is to promote this to an Eo.-multiplication extending the given E;-structure. We claim
that the space of Ei;-maps between any tensor power B’®™ and any other tensor power B'®" of B’ is
homotopy discrete and equivalent to the collection of maps of A-ring spectra: that is, homotopy classes
of maps B'®™ — B’®" (in A-modules) that commute with the multiplication laws up to homotopy. This
is a consequence of the analysis in [Rez98| (in particular, Theorem 14.5 there), and the fact that the
B’®"-homology of B'®™ is étale, so that the obstructions of [Rez98] all vanish.

It follows that if C is the smallest symmetric monoidal co-category of Alg(Mod(A’)) (i.e., E;j-algebras
in Mod(A’)) containing B’, then C is equivalent to an ordinary symmetric monoidal category, which is
equivalent to a full subcategory of the category of A-ring spectra. Since B’ is a commutative algebra object
in that latter category, it follows that it is a commutative (i.e., Eo) algebra object of Alg(Mod(A4’)), and
thus gives an E-algebra. The G-action, since it was by maps of A-ring spectra, also comes along. O

6.5. The even periodic and regular case. Our first calculation of a Galois group was in Theo-
rem where showed that the Galois group of a connective E.-ring was entirely algebraic. In this
section, we will show (Theorem that the analogous statement holds for an even periodic Eo.-ring with
regular (noetherian) my. As in the proof of Theorem the strategy is to reduce to considering ring spectra
with Kiinneth isomorphisms. Unfortunately, in the nonconnective setting, the ring spectra one wants can
be constructed only as Ej-algebras (rather than E,.-rings), so one has to work somewhat harder.

Definition 6.27. An E..-ring A is even periodic if:
(1) mA=0ifis odd.
(2) There exists a unit in 7oA.
In particular, 7, (A) ~ mo(A)[t:'] where |to] = 1.
55



Even periodic Eo.-rings (such as complex K-theory KU) play a central role in chromatic homotopy
theory because of the connection, beginning with Quillen, with the theory of formal groups. We will also
encounter even periodic E-rings in studying stable module oco-categories for finite groups below. The co-
categories of modules over them turn out to be fundamental building blocks for many other stable homotopy
theories, so an understanding of their Galois theory will be critical for us.

We begin with the simplest case.

Proposition 6.28. Suppose A is an even periodic Eoo-ring with mgA ~ k[tT1] where |t| = 2 and k a field.
Then the Galois theory of A is algebraic: mMod(A) ~ Gal(k*P /k).

PrOOF. We want to show that any finite cover of A is étale at the level of homotopy groups; flat would
suffice. Let B be a G-Galois extension of A. Then B®4 B ~ [[, B. Since 7,(A) is a graded field, it follows
that

T(B) @r.(a) T(B) = [ [ 7 (B).
G

Moreover, since B is a perfect A-module, it follows that 7.(B) is a finite-dimensional 7, (A)-module.

Making a base-change t +— 1, we can work in Z/2-graded k-vector spaces rather than graded k[t*!]-
modules. So we get a Z/2-graded commutative (in the graded sense) k-algebra B, = By & B; with the
property that we have an equivalence of Z/2-graded B’-algebras
(22) B, B, ~ [ B..

G
Observe that this tensor product is the graded tensor product.

From this, we want to show (purely algebraically) that B} = 0. Suppose first that the characteristic of
k is not 2. By Lemma below, there exists a map of graded k-algebras B!, — k. We can thus compose
with the map & — B, — k and use to conclude that B} ® k ~ [[ k as a graded k-algebra. This in
particular implies that Bj = 0 and that By is a finite separable extension of k, which proves Proposition
away from the prime 2.

Finally, at the prime 2, we need to show that still implies that B} = 0. In this case, Bj ® B} is a
commutative k-algebra and implies that it must be étale. After extending scalars to k, B} ® B} must, as
a commutative ring, be isomorphic to [[ k. However, any idempotents in B} @ Bj are clearly concentrated
in degree zero. So, we can make the same conclusion at the prime 2. O

Lemma 6.29. Let k be an algebraically closed field with 2 # 0, and A, a nonzero finite-dimensional Z/2-
graded commutative k-algebra. Then there exists a map of graded k-algebras A, — k.

PRrROOF. Induction on dim A]. If A} = 0, we can use the ordinary theory of artinian rings over alge-
braically closed fields. If there exists € A} # 0, we can form the two-sided ideal (z): this is equivalently
the left or right ideal generated by x. In particular, anything in (x) has square zero. It follows that 1 ¢ (x)
and we get a map of k-algebras

)
where A’ /(z) is a nontrivial finite-dimensional Z/2-graded commutative ring of smaller dimension in degree
one. We can thus continue the process. O

We can now prove our main result.

Theorem 6.30. Let A be an even periodic Eo-ring with mgA reqular noetherian. Then the Galois theory
of A is algebraic.

Most of this result appears in [BROS8|, where the Galois group of E,, is identified at an odd prime (as
the Galois group of its mp). Our methods contain the modifications needed to handle the prime 2 as well.

Remark 6.31. This will also show that all Galois extensions of A are faithful.
ProOF OF THEOREM [6.30l Fix a finite group G and let B be a G-Galois extension of A, so that
A~ B'G, B®AB3HB.
€]
56



By Proposition B is a perfect A-module; in particular, the homotopy groups of B are finitely generated
moA-modules.

Our goal is to show that B is even periodic and that moB is étale over mgA. To do this, we may reduce
to the case of mgA regular local, by checking at each localization. We are now in the following situation.
The Eo-ring A is even periodic, with mgA local with its maximal ideal generated by a regular sequence
T1,...,T, € oA for n = dimmgA. Let k be the residue field of myA. In this case, then one can define a
multiplicative homology theory P, on the category of A-modules via

P.(M) Y (M) (21,...,20)M) ~ 7,(M @4 A/ (21,...,70)),

where A/(xz1,...,2,) ~ A/x; ®4 -+ @4 A/x,. More precisely, it is a theorem of Angeltveit [Ang04] that
A/(z1,...,zy,) can be made (noncanonically) an Ej-algebra in Mod(A). In particular, A/(x1,...,x,) is, at
the very least, a ring object in the homotopy category of A-modules; this weaker assertion, which is all that
we need, is proved directly in [EKMMO97, Theorem 2.6]. The fact that each A/x; acquires the structure of a
ring object in the homotopy category of A-modules already means that for any A-module M, the homotopy
groups of M/x;M ~ M ®4 A/x; are actually mo(A4)/(z;)-modules.

In any event, M — P.(M) is a multiplicative homology theory taking values in k[
satisfies a Kiinneth isomorphism,

t*1]-modules. It

P*(M) Qk[tt1] P(N) ~ P*(M XA N),

by a standard argument: with N fixed, both sides define homology theories on A-modules; there is a natural
map between the two; moreover, this map is an isomorphism for M = A. This implies that the natural map
is an isomorphism by a five-lemma argument. While P, is a monoidal functor, it is not symmetric monoidal
in general. The Ei-ring A/(x1,...,2,) is usually not homotopy commutative if p = 2, although it can be
made homotopy commutative if p > 2.

For convenience, rather than working in the category of graded k[t*!]-modules, we will work in the
(equivalent) category of Z/2-graded k-vector spaces, and denote the modified functor by Q. (instead of P.).
Since A — B is G-Galois, it follows from B ®4 B ~ [[, B that there is an isomorphism of Z/2-graded
k[G]-modules,

Q.(B) @k Q(B) ~ [[ @(B).
G

In particular, it follows that:
(23) dim Qo(B) + dim Q+1(B) = |G]|.
We now use a “Bockstein spectral sequence” argument to bound the rank of myB and 7 B.

Lemma 6.32. Let M be a perfect A-module. Suppose that dimy Qo(M) = a. Then the rank of 7oM as a
moA-module (that is, the dimension after tensoring with the fraction field) is at most a.

PrOOF. Choose a system of parameters xi,...,z, for the maximal ideal of mgA. If M is as in the
statement of the lemma, then we are given that

dim7o(M/(21,...,2,)M) < a.

We consider the sequence of A-modules
M; = M/(x1,...,2))M =M @4 Ajx1 @4 - @4 Afxi;
here mo(M;) is a finitely generated module over the regular local ring mo(A)/(z1,...,z;). For instance,
mo(M,,) is a module over the residue field k, and our assumption is that its rank is at most a.
We make the following inductive step.

Inductive step. If mg(M;+1) has rank < a as a module over the regular local ring mo(A)/(z1,...,Tit1),
then mo(M;) has rank < a as a module over the regular local ring mo(A)/(x1, ..., ;).

To see this, consider the cofiber sequence

M,; g M; — Mi+1,
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and the induced injection in homotopy groups
0— Wo(Mi)/xiﬂ'oMi — 7T0(Mi+1).
We now apply the following sublemma. By descending induction on ¢, this will imply the desired claim.

Sublemma. Let (R,m) be a regular local ring, x € m \ m2. Consider a finitely generated R-module N.
Given an injection

0— N/zN — N’,

where N’ is a finitely generated R/(z)-module, we have

rankp N < rankp ;) N'.

PROOF. When R is a discrete valuation ring (so that R/(z) is a field), this follows from the structure
theory of finitely generated modules over a PID.

To see this in general, we may localize at the prime ideal (z) C R (and thus replace the pair (R, R/(x))
with Ry, R(s)/(2)R(z)), which does not affect the rank of either side, and which reduces us to the DVR
case. ]

With the sublemma, we can conclude that rank,(4)/(x,.....z,)To(M;) < a for all i by descending induction
on i, which completes the proof of Lemma [6.32

O

By Lemma it now follows that moB, as a mpA-module, has rank at most a = dimy Qo(B), where
a < |G|. However, when we invert everything in mpA (i.e., form the fraction field k(mpA)), then ordinary
Galois theory goes into effect (Proposition and moB ®r,4 k(moA) is a finite étale myA-algebra with
Galois group G. In particular, it follows that a = |G|.

As a result, by , Q1(B) = 0. It follows, again by the Bockstein spectral sequence, in the form of
Lemma below, that B is evenly graded and m, B is free as an A-module. In particular, 7o(B ® 4 B) ~
0B ®n,4 moB, which means that we get an isomorphism

moB QoA moB ~ 1_‘[7'1'0B7
G

so that 7 B is étale over mgA (more precisely, SpecmgB — Specmp A is a G-torsor), as desired. This completes
the proof of Theorem [6.30 O

Lemma 6.33. Let A be an even periodic Ey-ring such that mgA is reqular local and n-dimensional, with
mazimal ideal m = (x1,...,zy). Let M be a perfect A-module such that the A-module M/(z1,...,xn)M
satisfies w1 (M/(x1,...,2,)M) = 0. Then (M) =0 and mo(M) is a free wo(A)-module.

PROOF. Lemma follows from a form of the Bockstein spectral sequence: the evenness implies that
there is no room for differentials; Proposition 2.5 of [HS99] treats the case of A = E,,. We can give a direct
argument as follows.

Namely, we show that 71 (M/(z1,...,2;)M) =0 for i = 0,1,...,n, by descending induction on i. By
assumption, it holds for 4 = n. The inductive step is proved as in the proof of Lemma [6.32] except that
Nakayama’s lemma is used to replace the sublemma. This shows that m (M) = 0.

Now, inducting in the other direction (i.e., in ascending order in 4), we find that x1,...,z, defines a
regular sequence on mo(M) and the natural map

7T0(M)/(JL'1,... ,.Ii) — Wo(M/(Q}l,...,xi)),

is an isomorphism. This implies that the depth of mo(M) as a my(A)-module is equal to n, so that mo(M) is
a free mo(A)-module. O
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7. Local systems, cochain algebras, and stacks

The rest of this paper will be focused on the calculations of Galois groups in certain examples of stable
homotopy theories, primarily those arising from chromatic homotopy theory and modular representation
theory. The basic ingredient, throughout, is to write a given stable homotopy theory as an inverse limit of
simpler stable homotopy theories to which one can apply known algebraic techniques such as Theorem [6.30]
or Theorem [6.16] Then, one puts together the various Galois groupoids that one has via techniques from
descent theory.

In the present section, we will introduce these techniques in slightly more elementary settings.

7.1. Inverse limits and Galois theory. Our approach can be thought of as an elaborate version of
van Kampen’s theorem. To begin, let us recall the setup of this. Let X be a topological space, and let
U,V C X be open subsets which cover X. In this case, the diagram

unv ——U,
V X

is a homotopy pushout. In order to give a covering space Y — X, it suffices to give a covering space Yy — U,
a covering space Yy — V| and an isomorphism Yy |uny >~ Yv|uny of covers of U NV. In other words, the
diagram of categories

(24) Covy — Covy
COVV — COVUnV

is cartesian, where for a space Z, Covy denotes the category of topological covering spaces of Z. It follows
that the dual diagram on fundamental groupoids

T (UNV) ——=m<1(V)

l |

m<1(V) m<1(X)

is, dually, cocartesian. In particular, van Kampen’s theorem is a formal consequence of descent theory for
covers.

As a result, one can hope to find analogs of van Kampen’s theorem in other setting. For instance, if X
is a scheme and U,V C X are open subschemes, then descent theory implies that the diagram (where
Cov now refers to finite étale covers) is cartesian, so the dual diagram on étale fundamental groupoids is
cocartesian.

Our general approach comes essentially from the next result:

Proposition 7.1. Let K be a simplicial set and let p: K — CAlg(PrSLt) be a functor to the oco-category
CAlg(PrsLt) of stable homotopy theories. Then we have a natural equivalence in GalCat,

(25) CAlg" " @an) ~ lim CAIg™* (p(k)).

K keK

PROOF. The statement that is an equivalence equates to the statement that for any finite group

G, to give a G-torsor in the stable homotopy theory m P s equivalent to giving a compatible family of

G-torsors in p(k),k € K. (Recall from Remark that infinite limits in GalCat exist, but they do not

commute with the restriction GalCat — Caty,.) We observe that we have a natural functor from the left-

hand-side of to the right-hand-side which is fully faithful (as both are subcategories of the oo-category
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of commutative algebra objects in limg p), so that the functor

Torsg (CAlgW‘COV (@p)) — lim Torsg (CAlg™ Y (p(k)))
K keK
is fully faithful.

We need to show that if A € Fun(BG, CAlgW‘Cov(yinK p)) has the property that its image in Fun(BG, CAlg™ “¥ (p(k)))
for each k € K is a G-torsor, then it is a G-torsor to begin with. However, A is dualizable, since it is dual-
izable locally, and it is faithful, since it is faithful locally (i.e., at each k € K). The map A® A — [[, A is
an equivalence since it is an equivalence locally, and putting these together, A is a G-torsor. ([l

In the case where we work with finite covers, rather than weak finite covers, additional finiteness hy-
potheses are necessary.

Proposition 7.2. Let K be a simplicial set and let p: K — 2-Ring be a functor. Then we have a natural
fully faithful inclusion

(26) CAIg® (limp(k)) — lim CAIg"™ (p(k)),
K K

which is an equivalence if K is finite.

PROOF. Since both sides are subcategories of CAlg(@Kp(k)) = lm CAlg(p(k)), the fully faithful
inclusion is evident. The main content of the result is that if K is finite, then the inclusion is an equivalence.
In other words, we want to show that given a commutative algebra object in @K p(k) which becomes a
finite cover upon restriction to each p(k), then it is a finite cover in the inverse limit. Since both sides of
are Galois categories (thanks to Lemma, it suffices to show that G-torsors on either side are equivalent.
In other words, given a compatible diagram of G-torsors in the CAlg®" (p(k)), we want the induced diagram
in CAlg(pﬂlK p(k)) to be a finite cover.

So let A € Fun(BG, CAIgQiLnK p)) be such that its evaluation at each vertex k € K defines a G-torsor
in CAlg®¥(p(k)). We need to show that A € CAlgCOV(@ s P)- For this, in view of Corollary [6.14] it suffices
to show that A admits descent. But this follows in view of Proposition and the fact that the image of
A in each k € K admits descent in the stable homotopy theory p(k). ]

Using the Galois correspondence, one finds:

Corollary 7.3. In the situation of Proposz'tion or Pmposz'tion we have an equivalence in Pro(Gpdg,,):

weak weak

(27) lim 725 p(k) = w25 (lmp(k)), L w<1p(k) = 7 (limp(k)).
K K K K

For example, let U,V C X be open subsets of a scheme X. Then we have an equivalence

QCoh(X) >~ QCoh(U) xqconwnvy QCoh(V),

by descent theory. The resulting homotopy pushout diagram that one obtains on fundamental groupoids (by
(27)) is the van Kampen theorem for open immersions of schemes.

Using this, one can also obtain a van Kampen theorem for gluing closed immersions of schemes. For sim-
plicity, we state the result for commutative rings. Let A’, A, A” be (discrete) commutative rings and consider
surjections A" — A, A’ — A. In this case, one has a pull-back square (as we recalled in Example [2.23))

Mod¥ (A x 4 A”) — Mod®(A') .

| |

Mod“(A") ——= Mod“ (A)

Note that the analog without the compactness, or more generally connectivity, hypothesis would fail. Using
, and the observation that the Galois groupoid depends only on the dualizable objects, we obtain the
following well-known corollary:
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Corollary 7.4. We have

W‘gl(Spec(A’ x4 A")) =~ w%tl(SpecA/) Uret, (SpecA) ng(SpecA").

This result is one expression of the intuition that Spec(A’ x4 A”) is obtained by “gluing together”
the schemes SpecA’, SpecA” along the closed subscheme SpecA. This idea has been studied extensively in
[Lurllal.

These ideas are often useful even in cases when one can only approzimately resolve a stable homotopy
theory as an inverse limit of simpler ones; one can then obtain upper bounds for Galois groups. For example,
let K be a simplicial set, and consider a diagram f: K — CAlg. Let A = @K f(k). In this case, one has
always has a functor

Mod(A) — lim Mod(f(k)),
K

which is fully faithful on the perfect A-modules since the right adjoint preserves the unit. If K is finite, it is
fully faithful on all of Mod(A). It follows that, regardless of any finiteness hypotheses on K, there are fully
faithful inclusions

(28) CAIg*™ (Mod(A)) € CAIg™ (lim Mod(f(k))) < lim CAIg*™ (Mod(f (k)))-
K K

We will explore the interplay between these different Galois categories in the next section. They can be used
to give upper bounds on the Galois group of A since fully faithful inclusions of connected Galois categories
are dual to surjections of profinite groups.

7.2. oco-categories of local systems. In this subsection, we will introduce the first example of the
general van Kampen approach (Proposition [7.2)), for the case of a constant functor.

Let X be a connected space, which we consider as an co-groupoid. Let (C,®,1) be a stable homotopy
theory, which we will assume connected for simplicity.

Definition 7.5. The functor category Fun(X,C) acquires the structure of a symmetric monoidal co-category
via the “pointwise” tensor product. We will call this the co-category of C-valued local systems on X and
denote it by Locx (C).

This is a special case of the van Kampen setup of the previous section, when we are considering a
functor from X to 2-Ring or CAlg(Pr%) which is constant with value C. This means that, with no conditions
whatsoever, we have

V% (Locx (C)) ~ m X x w1k (C),

in view of Proposition where ﬁ denotes the profinite completion of the fundamental group m X.
Explicitly, given a functor f: X — FinSet, we obtain (by mapping into 1) a local system in CAlg(C)
parametrized by X. These are always weak finite covers in Locx(C), and these come from finite covers of
X or local systems of finite sets on X. Given weak finite covers in C itself, we can take the constant local
systems at those objects to obtain weak finite covers in Locx (C).

If, further, X is a finite CW complex, it follows that
m(Locyx (C)) ~ m X x m(C),

in view of Proposition We will use this to begin describing the Galois theory of a basic class of
nonconnective E-rings, the cochain algebras on connective ones.

In particular, let C = Mod(FE) for an E.-algebra E, so that we can regard Locx (Mod(E)) = Fun(X, Mod(E))
as parametrizing “local systems of E-modules on X.” The unit object in Locx (Mod(E)) has endomorphism
E.-ring given by the cochain algebra C*(X;FE). Therefore, we have an adjunction of stable homotopy
theories

Mod(C*(X; E)) = Locx (Mod(E)),
between modules over the E-valued cochain algebra C*(X; E) and Locx (Mod(E)), where the right adjoint

T takes the global sections (i.e., inverse limit) over X. The left adjoint is fully faithful when restricted to the
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perfect C*(X; F)-modules and in general if 1 is compact in Locy (Mod(FE)). Therefore, we get surjections
of fundamental groups

(29) ﬁ x 71 (Mod(E)) ~ 7¥*(Locx (Mod(E))) — 71 (Locx (Mod(E))) — m (Mod(C*(X; E))).
In this subsection and the next, we will describe the objects and maps in in some specific instances.

Example 7.6. If X is simply connected, then this map is an isomorphism, given the natural section
Mod(E) — Locx(Mod(E)) which sends an E-module to the constant local system with that value, so
E and C*(X; E) have the same fundamental group.

Suppose X has the homotopy type of a finite CW complex, so that the functor I is obtained via a finite
homotopy limit and in particular commutes with all homotopy colimits. In this case, as we mentioned earlier,
the unit object in Locx (Mod(E)) is compact, so that the map 72 (Locx (Mod(E))) — 71 (Locx (Mod(E)))
is an isomorphism. In this case, the entire problem boils down to understanding the image of the fully faithful,
colimit-preserving functor Mod(C*(X; E)) — Locx (Mod(E)).

By definition, Mod(C*(X; E)) is generated by the unit object, so its image in Locx(Mod(F)) consists
of the full subcategory of Locx (Mod(E)) generated by the unit object, which is the ¢rivial constant local
system. In particular, we should think of Mod(C*(X;E)) C Locx(Mod(E)) as the “ind-unipotent” local
systems of E-modules parametrized by X. We can see some of that algebraically.

Definition 7.7. Let A be a module over a commutative ring R and let G be a group acting on A by
R-endomorphisms. We say that the action is unipotent if there exists a finite filtration of R-modules

0CA I CAC---CA,_ 1 CA,=A,

which is preserved by the action of G, such that the G-action on each A;/A;_1 is trivial. We say that the
G-action is ind-unipotent if A is a filtered union of G-stable submodules A, C A such that the action of
G on each A, is unipotent.

Proposition 7.8. Let X be a connected space. Consider an object M of Locx (Mod(E)) and let M, be the
underlying E-module for some © € X. Suppose M is in the subcategory of Locx (Mod(E)) generated under
colimits under the unit. Then, the action of m1(X,x) on each moE-module mi(M,) is ind-unipotent.

Conversely, suppose E is connective. Given M € Locx(Mod(E)) such that the monodromy action of
m1 (X, x) on each m (M) is ind-unipotent, then if M is additionally n-coconnective for some n and if X is
a finite CW complex, we have M € Mod(C*(X; E)) C Locx (Mod(E)).

PRrROOF. Clearly the unit object of Locx(Mod(E)) has unipotent action of 71 (X, z) on its homotopy
groups: the monodromy action by 71 (X, x) is trivial. It follows inductively, via long exact sequences, that
any object in the subcategory of Locx (Mod(E)) generated by the unit under finite colimits has unipotent
action as well. Since homotopy groups commute with filtered colimits, the analogous statement holds for
the subcategory of Locx (Mod(E)) generated by the unit under all colimits (since any such can be obtained
as a filtered colimit of objects in the subcategory generated under finite colimits by the unit).

For the final assertion, since X is a finite CW complex, the functor Mod(C*(X; E)) — Locx (Mod(FE))
is fully faithful and commutes with colimits. We can write M as a colimit of the local systems of E-modules

OZTanﬁTzn_lM—)Tzn_QM — e,

where each term in the local system has only finitely many homotopy groups. It suffices to show that each
7>, M belongs to Mod(C*(X; E)) C Locx(Mod(E)). Working inductively, one reduces to the case where
M itself has a single nonvanishing homotopy group (say, a 7y) with ind-unipotent action of 7 (X, z). Since
the subcategory of Locx (Mod(FE)) consisting of local systems M with 7, (M,) = 0 for x # 0 is an ordinary
category, equivalent to the category of local systems of myE-modules on X, our task is one of algebra. One
reduces (from the algebraic definition of ind-unipotence) to showing that if My is a mgE-module, then the
induced object in Locx (Mod(F)) with trivial m (X, x)-action belongs to C*(X; E). However, this object
comes from the C*(X; E)-module C*(X;7<0E) ®ror Mo. O

Remark 7.9. Suppose X is one-dimensional, so that X is a wedge of finitely many circles. Then, for any F,
any M € Locy (Mod(E)) such that the action of 71 (X, ) is ind-unipotent on 7, (M, ) belongs to the image
of Mod(C*(X; E)) — Locx (Mod(FE)). In other words, one needs no further hypotheses on E or M,.
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To see this, we need to show (by Theorem [2.29)) that the inverse limit functor
[ = lim: Locx (Mod(E)) — Mod(C*(X; E)),
X

is conservative when restricted to those local systems with the above ind-unipotence property on homotopy
groups. Recall that one has a spectral sequence

ES' = HY(X;mM,) = m_T(X, M),

for computing the homotopy groups of the inverse limit. The s = 0 line of the Fs-page is never zero if the
action is ind-unipotent unless M = 0: there are always fixed points for the action of 71 (X, z) on m.(M,).
If X is one-dimensional, the spectral sequence degenerates at Fo for dimensional reasons; this forces the
inverse limit l'mX M to be nonzero unless M = 0.

As we saw earlier, in order to construct finite covers of the unit object in Locx(Mod(E)), we can
consider a local system of finite sets {Y,} .y on X (i.e., a finite cover of X), and consider the local system
{C*(Yy; E) }pex of Ex-algebras under E. The induced object in Locx (Mod(E)) will generally not be
unipotent in this sense. In fact, unless there is considerable torsion, this will almost never be the case.

For example, suppose G is a finite group, and let R be a commutative ring. Consider the G-action on
[I R. The group action is ind-unipotent if and only if each prime number p with p | |G| is nilpotent in R
(in particular, G must be a p-group for some p).

PROOF. Suppose ¢ | G and ¢ is not nilpotent in R, but the G-action on [[, R is ind-unipotent. It
follows that we can invert g and, after some base extension, assume that R is a field with ¢ # 0. We can
even assume (; € R. We need to show that the standard representation is not ind-unipotent when ¢ | |G;
this follows from restricting G to Z/q C G, and observing that various nontrivial one-dimensional characters
occur and these must map trivally into any unipotent representation.

Conversely, if G is a p-group and p is nilpotent in R, then by filtering R, we can assume p = 0 in R.
Now in fact any R[G]-module is ind-unipotent, because the augmentation ideal of R[G] is nilpotent. O

Corollary 7.10. Suppose p is not nilpotent in the Eo-ring R. Then the surjection ﬁ x mMod(E) —

—

mMod(C*(X; E) factors through ﬁp_l where w1 X -1 denotes the completion away from p.

Corollary 7.11. If R is a E-ring such that Z C R, then the map miMod(R) — m1Mod(C*(X; R)) is
an isomorphism of profinite groups.

Remark 7.12. In K (n)-local stable homotopy theory, the comparison question between modules over the
cochain E.-ring and local systems has been studied in [HL13].

Putting these various ideas together, it is not too hard to prove the following result, whose essential
ideas are contained in [Rog08|, Proposition 5.6.3].

Theorem 7.13. Let X be a finite CW complex. Then if R is an Es-ring with p nilpotent and such that
mR =0 fori>0 (e.g., a field of characteristic p), then the natural map

(30) m X, x mMod(R) — mMod(C*(X; R))

is an isomorphism.

Proor. By Corollary the natural map m X x miMod(R) - mMod(C*(X; R)) does in fact factor
through the quotient of the source where ﬁ is replaced by its pro-p-completion. It suffices to show that
the induced map is an isomorphism. Equivalently, we need to show that if Y — X is a finite G-torsor
for G a p-group, then C*(X; R) — C*(Y; R) is a faithful G-Galois extension. Equivalently, we need to show
that if {Y,}, .y is the local system of finite sets defined by the finite cover Y — X, then the local system of
R-modules {C*(Yz; R)},cx (which gives a G-Galois cover of the unit in Locx (Mod(R))) actually belongs
to the image of Mod(C*(X; R)). However, this is a consequence of Proposition because the monodromy
action is by elements of the p-group G. Any G-module over a ring with p nilpotent is ind-unipotent. |

Remark 7.14. Let Y — X be a map of spaces, and let R be as above. Then there are two natural local
systems of R-module spectra that one can construct:
63



(1) The object of Locx(Mod(R))) obtained from the C*(X; R)-module C*(Y’; R), i.e., the local system
C*(Y; R) ®c+(x;r) C*(*; R) which is a local system as * ranges over X.

(2) Consider the fibration Y — X as a local system of spaces {Y,} on X, x € X, and apply C*(; R)
everywhere.

In general, these local systems are not the same: they are the same only if the R-valued Filenberg-Moore
spectral sequence for the square

Yo —VY,

|

{z} —X

converges, for every choice of basepoint z € X. This question can be quite subtle, in general. Theorem [7.13]
is essentially equivalent to the convergence of the R-valued Eilenberg-Moore spectral sequence when Y — X
is a G-torsor for G a p-group. This is the approach taken by Rognes in [Rog08].

Finally, we close with an example suggesting further questions.

Example 7.15. The topological part of the Galois group of C*(S*;F,) is precisely z,. The Galois covers
come from the maps

C*(51§Fp) - C*(51§Fp),
dual to the degree p™ maps S' — S'. This would not work over the sphere S° replacing F,, in view of
Corollary [7.10] However, this does work in p-adically completed homotopy theory.

Let Sp, be the oco-category of p-complete (i.e., S°/p-local) spectra, and let §p be the p-adic sphere,
which is the unit of Sp,. The map C* (St §p) — C*(SY §p) which is dual to the degree p map S' — S! is
a Z/p-weak Galois extension in Sp,,. In particular, it will follow that the weak Galois group of Sp,, is the
product of Zp with that of Sp,, itself.

To see this, note that we have a fully faithful imbedding

Lgo/,Mod(C*(S; §p)) o~ Modspp(C’*(Sl; §p)) C Locg1(Sp,)-

In Locg1(Sp,,), we need to show that the local system of p-complete spectra obtained from the cover S 15 g1
actually belongs to the subcategory of Locg: (Spp) generated under colimits by the unit (equivalently, by the
constant local systems).
In order to prove this claim, it suffices to prove the analog after quotienting by p” for each p, since for
any p-complete spectrum X, we have
X = BLgo,(lim(X ® $°/p")),

n

as the colimit lim S9/p"™ (where the successive maps are multiplication by p) has p-adic completion given
by the desuspension of the p-adic sphere. But on the other hand, we can apply Remark to the cofiber of
p™ on our local system, since an order p automorphism on a p-torsion abelian group is always ind-unipotent.

By contrast, the analogous assertion would fail if we worked in the setting of all C*(S*; §p)-m0dules (not
p-complete ones): the (weakly) Galois covers constructed are only Galois after p-completion. This follows
because C*(S; §p) has coconnective rationalization, and all the Galois covers of it are étale (as we will show

in Theorem [8.18)).

7.3. Stacks and finite groups. To start with, let k be a separably closed field of characteristic p and
let G be a finite group. Consider the stable homotopy theory Modg (k) of k-module spectra equipped with
an action of G, or equivalently the co-category Locpa(Mod(k)) of local systems of k-module spectra on BG.
We will explore the Galois theory of Modg (k) and the various inclusions .

Theorem 7.16. 7y (Modg(k)) ~ G but m(Modg(k)) is the quotient of G by the normal subgroup gen-
erated by the order p elements.
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PROOF. The assertion of 71°*k(Modg (k)) is immediate: the weak “Galois closure” (i.e., maximal con-
nected object in the Galois category) of the unit in Modg (k) is [[ k, thanks to Proposition The more
difficult part of the result concerns the (non-weak) Galois group.

Any finite cover A € CAlg(Modg(k)) must be given by an action of G on an underlying E..-k-algebra
which must be [[¢ k for S a finite set; S gets a natural G-action, which determines everything. In particular,
we get that A must be a product of copies of [] JH k. We need to determine which of these are actually
finite covers. We can always reduce to the Galois case, so given a surjection G — G’, we need a criterion for
when []., k € CAlg(Modg(k)) is a finite cover.

Fix an order p element g € G. We claim that if [[,, k& € CAlg(Modg(k)) is a finite cover, then g
must map to the identity in G'. In fact, otherwise, we could restrict to Z/p C G to find (after inverting an
idempotent of the restriction) that J[;,, k would be a finite cover in Modz/,(k). This is impossible since

(11, /p k)hz/ P ~ [ while k"2/P has infinitely many homotopy groups; thus the unit cannot be in the thick
tensor ideal generated by [, k). It follows from this that if [[, k is a finite cover in Modg(k), then every
order p element must map to the identity in G’.

Conversely, suppose G — G is a surjection annihilating every order p element. We claim that [[., kis a
finite cover in Modg (k). Since it is a G'-Galois extension of the unit, it suffices to show that it is descendable
by Corollary For this, by the Quillen stratification theory (in particular, Theorem 7 one can check
this after restricting to an elementary abelian p-subgroup. But after such a restriction, our commutative
algebra object becomes a finite product of copies of the unit. O

Corollary 7.17. Let k be a separably closed field. The Galois group C*(BG;k) ~ k"¢ is given by the
quotient of the pro-p-completion of G by the order p elements in G.

By the pro-p-completion of G, we mean the maximal quotient of G which is a p-group. In other words,
we take the smallest normal subgroup N C G such that |G|/|N| is a power of p, and then take the normal
subgroup N’ generated by N and the order p elements in G. The Galois group of C*(BG; k) is the quotient
G/N.

PROOF. Observe that the oo-category of perfect C*(BG;k)-modules is a full subcategory of the oo-
category Locpg(Mod(k)) ~ Modg(k) of k-module spectra equipped with a G-action. We just showed in
Theorem that the Galois group of the latter was the quotient of G by the normal subgroup generated by
the order p elements. In other words, the descendable connected Galois extensions of the unit in Modg (k)
were the products [, k where G — G’ is a surjection of groups annihilating the order p elements.

It remains to determine which of these Galois covers actually belong to the thick subcategory generated
by the unit 1 € Modg(k). As we have seen, that implies that the monodromy action of 71 (BG) ~ G on
homotopy groups is ind-unipotent; this can only happen (for a permutation module) if G’ is a p-group. If G’
is a p-group, though, then the unipotence assumption holds and [], k does belong to the thick subcategory
generated by the unit, so these do come from Mod(C*(BG;k)). O

Remark 7.18. Even if we were interested only in E.-rings and their modules, for which the Galois group
and weak Galois group coincide, the proof of Corollary makes clear the importance of the distinction
(and the theory of descent via thick subcategories) in general stable homotopy theories. We needed thick
subcategories and Quillen stratification theory to run the argument.

Example 7.19. We can thus obtain a weak invariance result for Galois groups (which we will use later).
Let R be an E-ring under F,,. Then the Galois theory of R and RIM/P are the same. In fact, we know from
Mod® (R"/P) ~ Fun(BZ/p; Mod® (R)) that Galois extensions of R"”/P come either from those of R or from
the Z/p-action. However, [], ;pRisnotaZ /p-torsor because the thick ideal it generates cannot contain the
unit: in fact, the Tate construction on R with Z/p acting trivially is nonzero, while the Tate construction
on anything in the thick tensor ideal generated by [, /p R is trivial.

Consider now, instead of a finite group, an algebraic stack X. As discussed in Example [2.22] one has a
natural stable homotopy theory QCoh(X) of quasi-coherent complexes on X, obtained via
QCoh(X)= lim  D(Mod(4)),
SpecA—X
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where we take the inverse limit over all maps SpecA — X; we could restrict to smooth maps. It follows from
Theorem that a weak finite cover in QCoh(X) is the compatible assignment of a finite étale A-algebra
for each map SpecA — X. In other words, the weak Galois group of QCoh(X) is the étale fundamental group
of the stack X.

In characteristic zero, the unit object in QCoh(X) will be compact, so that the weak Galois group and
the Galois group of QCoh(X) are the same. More generally, one can make the same conclusion if X is tame,
which roughly means that (if X is Deligne-Mumford) the orders of the stabilizers are invertible. If this fails,
then the weak Galois group and the Galois group need not be the same, and one gets a canonical quotient
of the étale fundamental group of an algebraic stack, the Galois group of QCoh(X).

Example 7.20. Let G be a finite group, and let X = BG over an algebraically closed field of characteristic p.
Then QCoh(X) is precisely the co-category Modg (k) considered in the previous section. The fundamental
group of X is G, and the main result of the previous section (Theorem implies that the difference
between the Galois group of QCoh(X) and the étale fundamental group of X is precisely the order p elements
in the latter.

Thus, we know that for any map of stacks BZ/p — X where p is not invertible on X, the Z/p must
vanish in the Galois group of QCoh(X) (but not necessarily in fundamental group of X). When X = BG for
some finite group, this is the only source of the difference between two groups. We do not know what the
difference looks like in general.

Next, as an application of these ideas, we include an example that shows that the Galois group is a
sensitive invariant of an E,-ring: that is, it can vary as the E,.-structure varies within a fixed E;-structure.

Example 7.21. Let k be a separably closed field of characteristic p > 0. Let aj2 be the usual rank p? group
scheme over k and let (a,2)" be its Cartier dual, which is another infinitesimal commutative group scheme.
Let Z/p? be the usual constant étale group scheme. Consider the associated classifying stacks BZ/p* and
B(ay2)Y, and the associated cochain Eoo-rings C*(BZ/p?; k) and C*(B(ay2); k).

Since a;/Z is infinitesimal, it follows that the fundamental group of the stack B(a,2)
particular that m Mod(C*(B(ay2)Y;k)) is trivial. In other words, we are using the geometry of the stack
to bound above the possible Galois group for the E.-ring of cochains with values in the structure sheaf.
However, by Corollary we have m Mod(C*(BZ/p?; k)) ~ Z/p.

Finally, we note that there is a canonical equivalence of E;-rings between the two cochain algebras.
In fact, the k-linear abelian category of (discrete) quasi-coherent sheaves on BZ/p? can be identified with
the category of modules over the group ring k[Z/p?], which is noncanonically isomorphic to the algebra

V' is trivial and in

k[z]/(2?"). The k-linear abelian category of discrete quasi-coherent sheaves on B (ap2)Y is identified with the

category of modules over the ring of functions on a2, which is F[z]/ zP”. In particular, we get a k-linear
equivalence between either the abelian or derived categories of sheaves in either case. Since the cochain
E.-rings we considered are (as Ej-algebras) the endomorphism rings of the object k (which is the same
representation either way), we find that they are equivalent as E;-algebras.

8. Invariance properties

Let R be a (discrete) commutative ring and let I C R be an ideal of square zero. Then it is a classical
result in commutative algebra, the “topological invariance of the étale site,” [Gro03, Theorem 8.3, Exp. I,
that the étale site of SpecR and the closed subscheme SpecR/I are equivalent. In particular, given an étale

R/I-algebra E/, it can be lifted uniquely to an étale R-algebra R’ such that R’ @ p R/I ~ R.
In this section, we will consider analogs of this result for E.-rings. For example, we will prove:
Theorem 8.1. Let R be an E-algebra under 7. with p nilpotent in mogR. Then the map
R — R®y Z/p,
induces an isomorphism on fundamental groups.
Results such as Theorem will be extremely useful for us. For example, it will be integral to our

computation of the Galois groups of stable module co-categories over finite groups. Theorem [8:1] which
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is immediate in the case of R connective (thanks to Theorem together with the classical topological
invariance result), seems to be very non-formal in the general case.

Throughout this section, we assume that our stable homotopy theories are connected.

8.1. Surjectivity properties. We begin with some generalities from [Gro03|]. We have the following
easy lemma.

Lemma 8.2. Let G — H be a morphism of profinite groups. Then the following are equivalent:

(1) G — H is surjective.
(2) For every finite (continuous) H-set S, S is connected if and only if the G-set obtained from S by
restriction is connected.

Let (C,®,1) be a (connected) stable homotopy theory. Given a commutative algebra object A € C, we
have functors CAlg®¥(C) — CAlg®¥(Modc¢(A4)), CAlg™“°V(C) — CAlg™“**(Mod¢(A)) given by tensoring
with A. Using the Galois correspondence, this comes from the map of profinite groups m (Mod¢(A)) — m1(C)
by restricting continuous representations in finite sets. The following is a consequence of Lemma [3.2]

Proposition 8.3. Let A € CAlg(C) be a commutative algebra object with the following property: given any
A’ € CAlg(C) which is a weak finite cover, the map

(31) Idem(A") — Idem(A ® A")
is an isomorphism. Then the induced maps
m1(Mode(A)) — m1(C), w1 (Mod¢(A)) — my*k(C),

are surjections of profinite groups.

Thus, it will be helpful to have some criteria for when maps of the form are isomorphisms.

Definition 8.4. Given A € CAlg(C), we will say that A is universally connected if for every A’ € CAlg(C),
the map Idem(A’) — Idem(A4’ ® A) in is an isomorphism.

It follows by Proposition that if A is universally connected, then w¥°*Modc(A) — 71°2kC and
mMode(A) — mC are surjections; moreover, this holds after any base change in CAlg(C). That is, if
A’ € CAlg(C), then the map m (Mode(A® A’)) — m1(Modc(A”)) is a surjection, and similarly for the weak
Galois group.

Note first that if A admits descent, then is always an injection, since for any A’, we can recover
A’ as the totalization of the cobar construction on A tensored with A’ and since Idem commutes with
limits. In fact, it thus follows that if A admits descent, then Idem(A’) is the equalizer of the two maps
Idem(A ® A’) 3 1dem(A ® A ® A’). More generally, one can obtain a weaker conclusion under weaker
hypotheses:

Proposition 8.5. If A € CAlg(C) is faithful, then the map is always an injection, for any A" € CAlg(C).

PrOOF. It suffices to show that if e € Idem(A’) is an idempotent which maps to zero in Idem(A ® A’),
then e was zero to begin with. The hypothesis is that A’[e~!] becomes contractible after tensoring with A,
and since A is faithful, it was contractible to begin with; that is, e is zero. O

We thus obtain the following criterion for universal connectedness.

Proposition 8.6. Let (C,®,1) be a connected stable homotopy theory. Suppose A € CAlg(C) is an object
with the properties:

(1) A is descendable.
(2) The multiplication map A® A — A is faithful.

Then A is universally connected.
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ProOF. We will show that if B € CAlg(C) is arbitrary, then the map Idem(B) — Idem(A ® B) is an
isomorphism. Since A is descendable, we know that there is an equalizer diagram

Idem(B) — Idem(A ® B) 3 Idem(4A ® A® B).

To prove the lemma, it suffices to show that the two maps Idem(A ® B) Z Idem(A ® A ® B) are the same.

However, these maps become the same after composing with the map Idem(A® A ® B) — Idem(A ® B)
induced by the multiplication A ® A — A. Since A ® A — A is faithful, the map Idem(A ® A ® B) —
Idem(A ® B) is injective by Proposition which thus proves the result. O

Proposition [8.6] is thus almost a tautology, although the basic idea will be quite useful for us. Unfortu-
nately, the hypotheses are rather restrictive. If A is a local artinian ring and & the residue field, then the
map A — k admits descent. However, the multiplication map k ® 4 kK — k need not be faithful: k¥ ® 4 k has
always infinitely many homotopy groups (unless A = k itself). Nonetheless, we can prove:

Proposition 8.7. Let k be a field. Let A be a connective Eo-ring with a map A — k inducing a surjection
on my. Suppose A — k admits descent. Then A — k is universally connected.

PROOF. Once again, we show that for any A’ € CAlgy, the map A" — A’® 4 k induces an isomorphism
on idempotents. Since A — k is descendable, it suffices to show that the two maps

Idem(A’ @4 k) S Idem (A’ @4 k @4 k)

are the same. For this, we know that the two maps become the same after composition with the multiplication
map A’ ®4 (k®a k) = A’ ®4 k. To show that the two maps are the same, it will suffice to show that they
are isomorphisms. In other words, since we have a commutative diagram

(32) Idem(A' ®4 k) ZIdem(A’ @4 k ®4 k) — Idem(A’ ®4 k),

where the composite arrow is the identity, it suffices to show that either one of the two maps Idem(A’ ® 4
k) 3 Tdem(A’ ® 4 k ®4 k) is an isomorphism.
More generally, we claim that for any k-algebra R, the map

R— Ry (k®ak),

induced by the map of k-algebras k — k ® 4 k, induces an isomorphism on idempotents. (In , this is the
map that we get from free, without using the fact that A’ ® 4 k was the base-change of an A-algebra.) Since
we have a Kiinneth isomorphism, this follows from the following purely algebraic lemma.

Lemma 8.8. Let R, be a graded-commutative k-algebra and let R, be a graded-commutative connected
k-algebra: R{ ~ k and R}, = 0 for i > 0. Then the natural map from idempotents in R, to idempotents in
the graded tensor product R, @y R. is an isomorphism.

PrROOF. We have a map
Idem(R,) — Idem(R, ®j, R.),

which is injective, since the map k — R’ admits a section in the category of graded-commutative k-algebras.
But the “reduction” map Idem(R. ®; R,) — Idem(R,) is also injective. In fact, since idempotents form a
Boolean algebra, it suffices to show that an idempotent in R, ®j R, that maps to zero in R, must have been
zero to begin with. However, such an idempotent would belong to the ideal R, ®; R.,, which easily forces
it to be zero. |

O

Example 8.9. Proposition[8.7)applies in the setting of an artinian ring mapping to its residue field. However,
we also know that the map A — A/m for A artinian and m a maximal ideal can be obtained as a finite
composition of square-zero extensions, so we could also appeal to Corollary [B:12] below.
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8.2. Square-zero extensions. Given the classical topological invariance of the étale site, the following
is not so surprising.

Proposition 8.10. If A is an Ey-ring and M an A-module, then the natural map A — A ® M (where
A ® M denotes the trivial “square zero” extension of A by M), induces an isomorphism on fundamental
groups.

This will follow from the following more general statement.

Proposition 8.11. Let R be an Ey,-ring with no nontrivial idempotents. Let X be a two-fold loop object
in the oo-category CAlgR//R of R-algebras over R. Then the map R — X induces an isomorphism on
fundamental groups.

Note that a one-fold delooping is insufficient, because of the example of cochains on S*.

PROOF. As we will see below, X has no nontrivial idempotents. First, observe that we have maps
R — X — R by assumption, so that, at the level of fundamental groups, we get a section of the map
w1 (Mod(X)) — m1(Mod(R)). In particular, the map m (Mod(X)) — m1(Mod(R)) is surjective. We thus
need to show that the map m (Mod(R)) — 71 (Mod(X)) (coming from X — R) is also surjective, which we
can do via Proposition [8:3]

To see that, suppose X ~ Q?Y where Y is an object in CAlgR//R. We want to show that the fundamental
group of Mod(X) is surjected onto by that of Mod(R). Given the pull-back diagram of E..-algebras,

Q2YHR ’
R QY

we find that if QY is connected, then we have maps
m1(Mod(R)) = m1(Mod(R) Xmod(ay) Mod(R))) — m1(Mod(Q°Y)).

The second map is a surjection since it comes from a fully faithful inclusion of stable homotopy theories.
To show that the first map is a surjection, it will suffice to show that Mod(QY') is connected, since in
that case m;Mod(2Y") receives a map from mMod(R) and we have m(Mod(R) Xyeaoy)y Mod(R))) ~
71 (Mod(R)) Ur, (Mod(ey)) T1(Mod(R)).

Thus, in order to complete the proof, we need to show that QY has no nontrivial idempotents. However,
the diagram

QY —R,

R——Y
in turn shows that m.(QY) — m.(R) is a surjection with square-zero kernel (see the discussion at Re-
mark [2.41)). In particular, idempotents in Y and idempotents in R are equivalent. ]

We can also consider the Galois group is under (not necessarily trivial) square-zero extensions. Recall
(see [Lurl2]) that these are obtained as follows. Given an E..-ring A and an A-module M, for every map
¢: A— A® M in CAlg,,, we can form the pull-back

Al—A

L

A——=Ae M

)

where 0: A — A® M is the standard map (informally, a — (a,0)). The resulting map A" — A is referred to
as a square-zero extension of A, by QM.

Corollary 8.12. Notation as above, the map mMod(A’) — myMod(A) is a surjection.
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PROOF. In fact, this follows from the observation that m (Mod(A) Xnyoed(aeary Mod(A)) =~ 71 (Moda),
in view of the invariance of the Galois group under trivial square-zero extensions. But we always have a
surjection
m1(Mod(A) Xnod(asar) Mod(4)) — m1(Mod(4")),
thanks to the fully faithful imbedding
Mod(A’) — Mod(A) Xyoaaear) Mod(A),

which completes the proof. O

The Galois group is not invariant under arbitrary square-zero extensions. Let A = Q[z*!] where |z| =0
be the free rational E..-algebra on an invertible degree zero generator (so that A is discrete). Consider the
Q-derivation A — A sending a Laurent polynomial f(z) to its derivative. Then, when we form the pull-back

A ——A

| gy
f=(ff)

A——A A

)

the pull-back is given by Q itself. However, the map Q — Q[z*!] does not induce an isomorphism on Galois
groups.

8.3. Stronger invariance results. In this, we will prove the main invariance results of the present
section.

Theorem 8.13. Let A be a reqular local ring with residue field k and mazximal ideal m C A. Let R be an
E.-ring under A such that m is nilpotent in moR. Then the natural map

R— R®ak,

induces an isomorphism on fundamental groups.

PRrROOF. We start by showing that 73 (Mod(R ®4 k)) — 71 (Mod(R)) is always a surjection; in other
words, we must show that for any E.-algebra R’ under R, the natural map
(33) Idem(R') — Idem(R' @r (R®a k)) ~ Idem(R' ®4 k)
is an isomorphism.

Since k is a perfect A-module, it follows that R® 4 k is a perfect R-module. Moreover, R® 4 k is faithful
as an R-module because tensoring over A with k is faithful on the subcategory of Mod(A) consisting of
A-modules whose homotopy groups are m-power torsion. It follows that R — R ® 4 k is descendable in view
of Theorem [3.37} Therefore, the map is an injection. Since the map

k®ak —k,
is descendable, as k ® 4 k is connective with bounded homotopy groups and 7wy given by k, it follows from
Proposition [8.6| that (by tensoring this with R) that m1(Mod(R ®a4 k)) — m1(Mod(R)) is a surjection.
Moreover, using the cobar construction

R%Rmij@Ak@Ak}...,

where all Eo-rings in question have no nontrivial idempotents, we conclude that (by descent theory)
m1(Mod(R)) is the coequalizer of the two maps

1 (Mod(R®a k®a4k)) Zm(Mod(R®4 k)).

We want to claim that these two maps are the same, which will prove our result. For this, it will suffice to
show that the multiplication map R ®4 (k ®4 k) =& R ®4 k induces a surjection on fundamental groups,
because then we have a diagram

T(R®a k) » m(Mod(R®a k®a k) Zm1(Mod(R®a k),

where the two composites are equal.
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Finally, we observe that R®4 k@4 k — R® 4 k actually induces a surjection on fundamental groups, in
view of Proposition since k ® 4 k — k satisfies the conditions of that result; since A is regular, k ®4 k is
connective and has only finitely many nonzero homotopy groups, so k ® 4 £ — k admits descent. O

It seems likely that Theorem [8.13|can be strengthened considerably, although we have not succeeded in
doing so. For example, one would like to believe that if R is a discrete commutative ring and I C R is an
ideal of square zero, then given an E.-R-algebra R', the map R’ — R'®g R/I would induce an isomorphism
on fundamental groups. We do not know whether this is true in general. By Corollary it does induce a
surjection at least. The worry is that one does not have good control on the homotopy groups of a relative
tensor product of E..-ring spectra; there is a spectral sequence, but the filtration is in the opposite direction
than what wants.

For example, in the case when the E,-rings satisfy mild connectivity hypotheses, one can prove the
following much stronger result.

Theorem 8.14. Suppose R is a connective Eo-ring with finitely many homotopy groups and I C myR
an ideal of square zero. Let R' be an Eo.-R-algebra which is (—n)-connective for n > 0. Then the map
R — R ®g mo(R)/I induces an isomorphism on fundamental groups.

For example, one could take I = 0, and the statement is already nontrivial.

PRrOOF. Let Ry be the E..-R-algebra given by m(R) and consider Ry/I as well. Then we have maps
R — Ry — Ry/I and we want to show that, after base-changing to R’, the Galois groups are invariant. We
will do this in a couple of stages. We need first two lemmas:

Lemma 8.15. Let A be a connective Eo-ring and let A’ be an Eo-A-algebra which is (—n)-connective for
n > 0. Then the natural map

(34) Idem(A’) — Idem(A’ ® 4 mpA)

is an isomorphism. In particular, it follows that mMod(A’ ® 4 mgA) — mMod(A’) is a surjection.

PROOF. In fact, by a connectivity argument (taking an inverse limit over Postnikov systems), the Adams
spectral sequence based on the map A — mpA converges for any A-module which is (—n)-connective for
n > 0. In other words, we have that

A’ = Tot (A’ ®amAZA ®4mA®AmAS )

so that, since Idem commutes with limits, we find that Idem(A’) is the equalizer of the two maps Idem (A’ ® 4
moA) ZIdem(A’ ® 4 m9A ® 4 moA). In particular, is always injective. Moreover, by the same reasoning,
the multiplication map mpA ®4 mgA — meA (which is also a map from a connective E-ring to its zeroth
Postnikov section) induces an injection

Idem(A’ @4 mgA ®4 moA) — Idem (A’ ® 4 moA),

which equalizes the two maps Idem(A’ ® 4 mpA) = Idem (A’ ® 4 mpA ®4 moA). It follows that the two maps
were equal to begin with, which proves that is an isomorphism. O

Lemma 8.16. Let A be a discrete Eqo-ring and J C A a square-zero ideal. Then, given any Eo.-A-algebra
A’, the natural map A" — A’ ®4 A/J induces an isomorphism on idempotents.

PROOF. This is a consequence (indeed, a restating) of Corollary ]

Finally, we can complete the proof of Theorem which will follow a familiar pattern. First, sup-
pose I = 0. Using descent along R — myR, one concludes that m(Mod(R’)) is the coequalizer of the
two maps m1(Mod(R' @ moR @g moR)) = m1(Mod(R' @ moR)). We wish to claim that the two maps are
equal. Now the map mgR ®g mgR — mgR satisfies the conditions of Lemma [8.15] so one concludes that the
map m1(Mod(R' ®g moR)) — m(Mod(R' @ moR ®p moR)) is a surjection, which coequalizes the two maps
considered above.

Next, we need to allow I # 0. By composition R — 7<gR — Ry/I, we may assume that R itself is
discrete. In this case, the map R — Ry/I satisfies descent and is universally connected by Lemma
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Therefore, we can apply the same argument as above, to write w1 (Mod(R’)) as the coequalizer of the two
maps 71 (Mod(R' ®g, Ro/I ®r, Ro/I)) 271 (Mod(R ®pr, Ro/I)). Moreover, these two maps are the same
using the surjection 73 (Mod(R' ®g, Ro/I)) = m1(Mod(R' ®g, Ro/I ®gr, Ro/I)) given to us by Lemma
as above. |

Remark 8.17. We do not necessarily expect Theorem [8.14] to hold if R is only assumed connective, because
we needed R — myR to satisfy descent in order to run the above proof.

8.4. Coconnective rational E..-algebras. Let k be a field of characteristic zero, and let A be an
E.-k-algebra such that:

(1) mA =0 fori>0.
(2) The map k — mpA is an isomorphism.

Following [Lurlle], we will call such E..-k-algebras coconnective; these are the E-rings which enter,
for instance, in rational homotopy theory. In the following, we will prove:

Theorem 8.18. If A is a coconnective Eo-k-algebra, then every finite cover of A is étale. In particular,
m1Mod(A) ~ Gal(k*P /k).

PRrOOF. We will prove Theorem using tools from |[Lurlle]. Namely, it is a consequence of [Lurllel
Proposition 4.3.13] that every coconnective Eoo-k-algebra A can be obtained as a totalization of a cosimplicial
E..-k-algebra A® where A?, for each i > 0, is in the form k @ V[—1] where V is a vector space over k, and
this is considered as a trivial “square zero” extension. In rational homotopy theory, this assertion is dual to
the statement that a connected space can be built as a geometric realization of copies of wedges of S*.

Now we know from Proposition that the Galois groupoid is invariant under trivial square-zero
extensions, so it follows that m; Mod(A?) ~ Gal(k*P/k), with the finite covers arising only from the étale
extensions (or equivalently, finite étale extensions of k itself). It follows easily from this that the finite covers
in the oo-category TotMod(A®) are in natural equivalence with the finite étale extensions of k, and this
completes the proof, since the co-category of perfect A-modules imbeds fully faithfully into this totalization.

O

Note that the strategy of this proof is to give an upper bound for the Galois theory of the E..-ring A by
writing it as an inverse limit of square-zero E.,-rings. One might, conversely, hope to use Galois groups to
prove that E.-rings cannot be built as inverse limits of certain simpler ones. For example, in characteristic
p, the example of cochain algebras shows that the analog of Theorem [8.18]is false; in particular, one cannot
write a given coconnective Eo.-ring in characteristic p as a totalization of square-zero extensions.

9. Stable module co-categories

Let G be a finite group and let k& be a field of characteristic p, where p divides the order of G. The theory
of G-representations in k-vector spaces is significantly more complicated than it would be in characteristic
zero because the group ring k[G] is not semisimple: for example, the group G has k-valued cohomology. If
one wishes to focus primarily on, for example, the cohomological information specific to characteristic p,
then projective k[G]-modules are essentially irrelevant and, factoring them out, one has the theory of stable
module categories reviewed earlier in Example[2.26] One obtains a compactly generated, symmetric monoidal
stable co-category Stg(k) obtained as the Ind-completion of the Verdier quotient of Fun(BG, Mod”(k)) by
the ideal of perfect k[G]-module spectra.

Our goal in this section is to describe the Galois group of a stable module co-category for a finite group.
Since any element in the stable module co-category can be viewed as an ordinary linear representation of G
(for compact objects, finite-dimensional representations) modulo a certain equivalence relation, these results
ultimately come down to concrete statements about the tensor structure on linear representations of G
modulo projectives.

Our basic result (Theorem is that the Galois theory of a stable module category for an elementary
abelian p-group is entirely algebraic. We will use this, together with the Quillen stratification theory, to
obtain a formula for the Galois group of a general stable module co-category, and calculate this in special
cases.
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9.1. The case of Z/p. Our first goal is to determine the Galois group of Sty (k) when V' is elementary
abelian, i.e. of the form (Z/p)™. In this case, recall (Theorem [2.30) that Sty (k) is symmetric monoidally
equivalent to the co-category of modules over the Tate construction kY. We will start by considering the
case V =Z/p.

Proposition 9.1. Let k be a field of characteristic p > 0. The Galois theory of the Tate construction k'2/P
is algebraic.

PROOF. In the case p = 2, k*”/2 has homotopy groups given by
ktZ/Q ~ k[til],

where |t| = —1. A (simpler) version of Proposition shows that any Galois extension of k'%/2 is étale, since
7o satisfies a perfect Kiinneth isomorphism for k*2/2-modules and every module over k*%/2 is algebraically
flat. Tt follows that if k*2/2 — R is G-Galois, for G a finite group, then 7R is a finite G-Galois extension of
k.

The case of an odd prime is slightly more subtle. In this case, we have
KPP ~ k[tFY @ E(u), |t = =2, |ul = -1,

so that we get a tensor product of a Laurent series ring and an exterior algebra. Since the homotopy ring is
no longer regular, we will have to show that any G-Galois extension of k'%/? is flat at the level of homotopy
groups. We can do this by comparing with the Tate construction W (k)*2/?, where W (k) is the ring of Witt
vectors on k and Z/p acts trivially on W (k). The Ey-ring W (k)*/P has homotopy groups given by

T W () Y], ] =2,
and the E.,-ring that we are interested in is given by
KPP o W ()P @y K.

Now Proposition tells us that the Galois theory of W (k)"/? is algebraic, and the invariance result
Theorem [8.13 enables us to conclude the same for k*2/7. O

9.2. Tate spectra for elementary abelian subgroups. Let k be a field of characteristic p. We
know that k*”/P has homotopy groups given by a tensor product of an exterior and Laurent series algebra
on generators in degrees —1, —2, respectively. For an elementary abelian p-group of higher rank, the picture
is somewhat more complicated: the homotopy ring behaves irregularly (with entirely square-zero material
in positive homotopy groups), but the Tate construction is still built up from a diagram of E..-rings whose
homotopy rings come from tensor products of polynomial (or Laurent series) rings and exterior algebras.
This diagram roughly lives over IP’271 where n is the rank of the given elementary abelian p-group, and the
stable module oo-category Stz/p)»(k) can be described as quasi-coherent sheaves on a derived version of
projective space (Theorem . In this subsection, we will review this picture, which will be useful when we
describe the Galois groups in the next section.

We consider the case of p > 2, and leave the minor modifications for p = 2 to the reader. Fix an
elementary abelian p-group V = (Z/p)", and let Vi = V ®p, k. Consider first the homotopy fixed points

k" | whose homotopy ring is given by

m (k") = B(Vy) @ Sym™(VyY),

where the exterior copy of V, is concentrated in degree —1, and the polynomial part is concentrated in degree
—2. For each nonzero homogeneous polynomial f € Sym*(V,Y), we can form the localization k" [f~!], whose
degree zero part modulo nilpotents is given by the localization Sym*(VkV)( #) (i.e., the degree zero part of the
localization Sym*(V,Y)[f~!]). There is also a small nilpotent part that comes from the evenly graded portion
of the exterior algebra. In particular, we find, using natural maps between localizations:

(1) For every Zariski open affine subset U C P(V,Y), we obtain a (canonically associated) E.-ring
OYP(U) by localizing k"Y' at an appropriate homogeneous form. Precisely, U is given as the
complement to the zero locus of a homogeneous form f € Sym*(V}’), and we invert f in kMY
0P (U7) = KV [f1).
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(2) For every inclusion U C U’ of Zariski open affines, we obtain a map of E.-algebras (under k")
OwP(U') — O%P(U). These maps are canonical; O'P(U’), O*P(U) are localizations of k"Y' and
OP(U) has more elements inverted.

(3) For each U C P(V}Y), the Ex-ring O'P(U) has a unit in degree two. The ring mo(O'"P(U)) is
canonically an algebra over the (algebraic) ring of functions O (U) on U C P(V}Y), and is a tensor
product of Oae(U) with the even components of an exterior algebra over k.

(4) We have natural isomorphisms of sheaves

T (OFP) ~ 71y (O™°P) ®0,, O(-1),
where O(1) is the usual hyperplane bundle on P(V,”) and O(r) ~ O(1)®".

It follows that the homotopy groups 7.(O'*P(U)) for U C P(V,Y) fit together into quasi-coherent sheaves
on the site of affine Zariski opens U C P(V,’) and inclusions between them. In particular, we can view the
association U + O%P(U) as defining a sheaf of Ey-ring spectra (under k, or even under k"V') over the
Zariski site of P(V}’), whose sections over an affine open U C P(V,) are given by O*P(U).

We will now describe our basic comparison result. Since O%P is a sheaf of E_.-algebras under k"Y',
obtain a symmetric monoidal, colimit-preserving functor

Mod(E"V) — QCoh(O™P),

we

into the oo-category QCoh(O™P) of quasi-coherent O*P-modules, defined as the homotopy limit

QCOh(O™F) = lim  Mod(O'P (1),
UCP(VY)
where the homotopy limit is taken over all open affine subsets of P(V}Y). Restricting to Mod® (k") ~
Fun(BV,Mod"(k)), we obtain a symmetric monoidal exact functor

Fun(BV, Mod“ (k)) — QCoh(O"P).

We observe that the standard representation of V', as an object of the former, is sent to zero in QCoh(O**°P). In
fact, the standard representation of V' corresponds to a k""-module with only one nonvanishing homotopy
group, and it therefore vanishes under the types of periodic localization that one takes in order to form
OP(U) for U C P(V}') an open affine. Using the universal property of the stable module co-category, we
obtain a factorization

Fun(BV, Mod® (k)) — Sty (k) — QCoh(O"P),

where the functor Sty (k) — QCoh(O'P) is symmetric monoidal and colimit-preserving.

Theorem 9.2. The functor Mod(k'V') ~ Sty (k) — QCoh(O™P) is an equivalence of symmetric monoidal
oo-categories.

PROOF. We start by observing that, by construction of the Verdier quotient (Definition [2.10), the stable
module co-category Sty (k) is obtained as a localization of Mod(k"") ~ Ind(Fun(BV,Mod”(k))), and in
particular k'Y is a localization of the Eoo-ring k"V.

By construction, k*" is the localization of K"V at the map of k"V-modules M — 0, where M is the
kMY -module corresponding to the standard representation of V. So, in particular, the localization functor

Mod (k") — Mod(k*V),
given by tensoring up, has a fully faithful right adjoint which imbeds Mod (k") as the subcategory of all k™" -
modules N such that Homyjoqxnvy (M, N) is contractible. If we write ey, ..., e, € 7_o(k"V) for polynomial
generators of k"Y', then k"Y' /(ey,. .., e,) € Mod® (k") generates the same thick subcategory as M, as we

observed in the discussion immediately preceding Definition m So, the k*V-modules are precisely the
kMY -modules N such that

N/(e1,...,e,)N ~0 € Mod(k"),
using self-duality of k"Y' /(eq, ..., en).
Now, we have a morphism of E.-rings
(3) BV S TR, 00),
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and our first task is to show that this morphism induces an equivalence k' — T'(P(V,Y), O™P). Observe
first that, after inverting any of ey, ..., e, € T_s(k"), becomes an equivalence since we already know
what O'P looks like on the basic open affines; we also know that taking global sections over P(V,”) is a
finite homotopy limit and thus commutes with arbitrary homotopy colimits. However, we also know that

k" /(e1,...,e,) maps to the zero O*°P-module since, on every basic open affine of P(V,Y), one of the {e;} is
always invertible. Thus we get a map k'Y — T'(P(V}Y), O*P) of k"Y' -modules with the dual properties:
(1) Both modules smash to zero with k" /(e1,...,e,).

(2) The map induces an equivalence after inverting each e;, 1 <i <n.

By a formal argument, it now follows that k& — T'(P(V,Y), O%P) is an equivalence to begin with. In fact,
we show that, for each 7, the map

(36) EV/(er,... e) = T(PVY),0%P)/(eq,. .., e;)
is an equivalence by descending induction on i. For ¢ = n, both sides are contractible. If we are given that
is an equivalence, then the map &tV /(e1,...,e;—1) — T(P(VY),O%P)/(e1,...,ei—1) has the property
that it becomes an equivalence after either inverting e; (by the second property above) or by smashing with
k" /(e;) (by the inductive hypothesis); it thus has to be an equivalence in turn. This completes the inductive
step and the proof that k'Y ~ I'(P(V,Y), O%P).

All in all, we have shown that the functor

Mod (k") ~ Sty (k) — QCoh(O*P)

is fully faithful. To complete the proof of Theorem we need to show that the global sections functor is
conservative on QCoh(OP). However, if F € QCoh(O"P) has the property that I'(P(V,Y), F) is contractible,
then the same holds for Fle; 1]. By analyzing the descent spectral sequence, it follows that the global sections
of Fle; '] are precisely the sections of F over the ith basic open affine chart of P(V,Y). Thus, if T(P(V,Y), F)
is contractible, then F has contractible sections over each of the basic open affines, and is thus contractible
to begin with. (This argument is essentially the ampleness of O(1).) a

9.3. G-Galois extensions for topological groups. Our next goal is to calculate the Galois group
for KtV for any elementary abelian p-group V. In the case of rank one, we had a trick for approaching the
Galois group. Although k'Y was not even periodic, there was a good integral model (namely, W (k)!"") which
was related to k*V by reducing mod p, so that we could use an invariance property to reduce to the (much
easier) Eo-ring W (k)tV.

When the rank of V' is greater than one, both these tricks break down. There is no longer a comparable
integral model of an E.-ring such as k"2/P @ k*2/P_ as far as we know. Our strategy is based instead on a
comparison with the Tate spectra for tori, which are much more accessible. To interpolate between the Tate
spectra for tori and the Tate spectra for elementary abelian p-groups, we will need a bit of the theory of
Galois extensions for topological groups, which was considered in [Rog08]. We will describe the associated
theory of descent in this section.

Definition 9.3. Fix a topological group G which has the homotopy type of a finite CW complex (e.g., a
compact Lie group). Let R be an E.-ring and let R’ be an E.-R-algebra with an action of G (in the
oo-category of E..-R-algebras).

We will say that R’ is a (faithful) G-Galois extension of R if there exists a descendable E.-R-algebra
R such that we have an equivalence of E..-R/"-algebras

R @r R" ~ C*(G; R"),
which is compatible with the G-action.

Note that the cochain E..-ring C*(G; R") is the “coinduced” G-action on an R”-module. It follows in
particular that the natural map R — R'"“ is an equivalence, and is so universally; for any R € CAlgp />

the natural map R — (R ®gr ﬁ)hG is an equivalence. Moreover, R’ is perfect as an R-module, since this
can be checked locally (after base-change to R”) and G has the homotopy type of a finite CW complex. It
follows from general properties of descendable morphisms that faithful G-Galois extensions are preserved
under base-change.
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Remark 9.4. If G is a finite group, then this reduces to the earlier definition.

We will need the following version of classical Galois descent, which has been independently considered
in various forms by several authors, for instance [Hes09), (GL, Meil2].

Theorem 9.5. Let G be a topological group of the homotopy type of a finite CW complex, and let R — R’
be a G-Galois extension of Eoy-rings. The natural functor

(37) Mod(R) — Mod(R')"¢,
is an equivalence of co-categories.

The “natural functor” comes from the expression R ~ R'"G: the G-action on R’ induces one on the
symmetric monoidal co-category Mod(R’). In particular, we get a fully faithful imbedding Mod”(R) —
Mod(R")"¢ for free.

PROOF. Suppose first that R’ ~ C*(G; R) with the G-action coming from the translation action of G
on itself. Then, we have a fully faithful, colimit-preserving imbedding

Mod(R') C Loca(Mod(R)),

as we saw in Section The G-action here on Locg(Mod(R)) comes from the translation action again.
Taking homotopy fixed points, we get

(38) Mod(R')"“ ¢ Locg, . (Mod(R)) =~ Loc,(Mod(R)) ~ Mod(R),

because the construction X +— Locx (Mod(R)) sends homotopy colimits in X to homotopy limits of stable
oo-categories. The natural functor Mod(R) — Mod(R')*® now composes all the way over in to the
identity, so that it must have been an equivalence to begin with since all the maps in are fully faithful.

Now suppose R — R’ is a general G-Galois extension, so that there exists a descendable E.-R-algebra
T such that R — R’ becomes a trivial Galois extension after base-change along R — T'. The functor is
a functor of R-linear co-categories so, to show that it is an equivalence, it suffices to show that induces
an equivalence after applying the construction ®yoq(gyMod(T): that is, after considering T-module objects
in each oo-category. In other words, to show that is an equivalence, it suffices to tensor up and show
that

Mod(T) — (Mod(R))"” @ptoar) Mod(T) = (Mod(R') @ytoa(r) Mod(T))"" ~ Mod(C*(G; T))"C,

is an equivalence of co-categories, which we just proved. O

It follows in particular that whenever we have a G-Galois extension in the above sense, for G a topological
group then we can relate the fundamental groups of R and R’. In fact, we have, in view of Theorem [9.5]

CAIg® (R) ~ CAlg® (R,

Using the Galois correspondence, it follows that there is a G-action on the object <1 Mod(R’) € Pro(Gpdg,),
and the homotopy quotient in Pro(Gpdg,,) by this G-action is precisely the fundamental groupoid of Mod(R),
ie.,

m<1Mod(R) ~ (m<1Mod(R')), o € Pro(Gpdg,).

We now describe homotopy orbits in Pro(Gpdg,, ) in the case that will be of interest. Let X € Pro(Gpdg,)
be a connected profinite groupoid and consider an action of a connected topological group G on X.

Proposition 9.6. To give an action of G on X € Pro(Gpdg,)=° is equivalent to giving a homomorphism
of groups 71 (G) — w1 (X) whose image is contained in the center of w1(X). In other words, the 2-category
Fun(BG, Pro(Gpdg,,)=%) can be described as follows:

(1) Objects are profinite groups F together with maps ¢: w1 (G) — F whose image is contained in the
center of F.
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(2) 1-morphisms between pairs (F,¢) and (F',¢") are continuous homomorphisms ¢: F — F' such
that the diagram

771(G) 5

¢>X
"

F——F
commutes.
(8) 2-morphisms are given by conjugacies between homomorphisms.

In particular, the forgetful functor Fun(BG, Pro(Gpdg,)=%) — Pro(Gpdg, )= induces fully faithful maps on
the hom-spaces.

PROOF. In order to give an action of X € Pro(Gpdg,)=°, we need to construct a map of E;-spaces G' —
Autp,o(Gpa,, )20 (X), where Autp,ogpd, )>0(X) is the automorphism E;-algebra of X. Since, however, G is
connected, it is equivalent to specifying a map of Ej-algebras (or loop spaces) into 7>1 Autp,o(apa, )=0(X)-
However, we know from Proposition that 7>1Autp,(gpa,, )20 (X) is precisely a K(Z(m1(X)), 1), so the
space of Ej-maps as above is simply the set of homomorphisms 71 (G) = Z (1 (X)).

Finally, we need to understand the mapping spaces in Fun(BG, Pro(Gpdg,,)=°). Consider two connected
profinite groupoids X, Y with G-actions. The space of maps X — Y in Fun(BG, Pro(Gpdg,)) is equivalent
to the homotopy fixed points Homp,o(gpd,,,) (X, V)¢ where Homp,o(Gpay, ) (X, Y) is a groupoid as discussed
earlier. In general, given any groupoid ¢ with an action of G, the functor 4" — ¢ is fully faithful. The
action of G means that every element in 7;(G) determines a natural transformation from the identity to
itself on ¢, and the homotopy fixed points pick out the full subcategory of ¢ spanned by elements on which
that natural transformation is the identity (for any v € m1(G)).

In the case of Homp,o(Gpa,, ) (X, Y), the objects are continuous homomorphisms ¢: 71 X — 7Y, and the
morphisms between objects are conjugacies. For v € m1(G), we obtain elements v, € 71 (X) and 7, € m(Y)
(in view of the G-action on X,Y’), and the action of v on Homp,o(apa,, )(X,Y) at the homomorphism 1)
is given by the element t(7;)¥(v,) ™!, which determines a self-conjugacy from ¢ to itself. To say that this
self-conjugacy is the identity for any ~, i.e., that the map is G-equivariant (which here is a condition instead
of extra data), is precisely the second description of the 1-morphisms. O

Remark 9.7. The above argument would have worked in any (2, 1)-category where we could write down
the m; of the automorphism Eq-algebra easily.

In particular, if G acts trivially on Y € Pro(Gpdg,)2°, then to give a map X — Y is equivalent to
giving a map in Pro(Gpdg,) which annihilates the image of 71 (G) — m1(X). It follows that the homotopy
quotients Xpe in Pro(Gpdg,) can be described by taking the quotient of m X by the closure of the image
of 71 (G): this is the universal profinite groupoid with a trivial G-action to which X maps.

Putting all of this together, we find:

Corollary 9.8. Let G be a connected topological group of the homotopy type of a finite CW complez, and
let R — R’ be a faithful G-Galois extension. Then we have an exact sequence of profinite groups

(39) G — mMod(R') — mMod(R) — 1.

9.4. The general elementary abelian case. Let V' be an elementary abelian p-group and let k be
a field of characteristic p. In this section, we will prove our main result that the Galois theory of &tV is
algebraic. In order to do this, we will use the presentation in Theorem m of Mod(k*V) via quasi-coherent
sheaves on a “derived” version of P(V,Y). Any G-Galois extension of k'Y clearly gives a G-Galois extension
of O*P(U) for any U C P(V}’) by base-change. Conversely, the affineness result Theorem implies that
to give a G-Galois extension of k'Y is equivalent to giving G-Galois extensions of O*P(U) for U C P(V,Y)
affine together with the requisite compatibilities. This would be quite doable if O'*P(U) was even periodic
with regular 7y, although the exterior generators present an obstacle. Nonetheless, by a careful comparison
with the analog for tori, we will prove:

Theorem 9.9. Let V be an elementary abelian p-group. If k is a field of characteristic p, all finite coverings
of k' are étale, so w1 (Mod(ktV)) ~ Gal(kP /k).
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PROOF. Since projective space is (geometrically) simply connected, it suffices to show that the Galois
theory of
KD Gy KD o P 0 O (B(Zp)" B),
for n > 0, is algebraic, and thus given by the (algebraic) étale fundamental group of the corresponding affine
open cell in P(V}”). These Ey-rings are the O*P(U) for U C P(V}’) the basic open affines of projective
space. It will follow that a faithful Galois extension of £tV is locally algebraically étale over P(VY).

For this, we will use the fibration sequence
S — BZ/p — BS',

induced by the inclusion Z/p C S with quotient S*. This is a principal S'-bundle and we find in particular
an S'-action on C*(BZ/p; k) such that

(40) C*(BS'; k) ~ C*(BZ/p; k)"’

In fact, the map C*(BS'; k) — C*(BZ/p; k) is a faithful S*-Galois extension (in the sense of Definition [9.3):
by the Eilenberg-Moore spectral sequence, and the fiber square

BZ/p x St —— BZ/p ,

L

BZ/p BS!
expressing the earlier claim that BZ/p — BS! is an S!-torsor, it follows that
C*(BZ/p; k) ©@c+(Bsrik) C*(B(Z/p); k) ~ C*(S*; k) @ C*(BZ/p; k),

with the “coinduced” S!-action on the right. Moreover, C*(BS'; k) — C*(BZ/p; k) is descendable: in fact,
a look at homotopy groups shows that the latter is a wedge of the former and its shift.

Let T" ~ (S1)™ be the n-torus, which contains (Z/p)" as a subgroup. Similarly, we find that there is
a T™-action on C*(B(Z/p)™; k) in the oco-category of C*(BT";k)-algebras which exhibits C*(B(Z/p)"; k)
as a faithful T™-Galois extension of C*(B(Z/p)"™;k). We can now apply a bit of descent theory. Fix any
C*(BT™; k)-algebra R, and let R’ ~ R®@c« g1y C*(B(Z/p)™; k). Since R’ is a faithful T"-Galois extension
of R, we have a (natural) exact sequence given by Corollary

(41) Z" — 1 (Mod(R')) — m1(Mod(R)) — 1.

Finally, we may attack the problem of determining the Galois theory of k*2/? @ kMZ/P)" where n > 0.

We have
1.C*(B(Z/p)" T k) =~ kleg, e1,. .., en] @ Eleg, ..., €n), |ei] = =2, |ei] = —1.
Our goal is to determine the Galois theory of the localization C*(B(Z/p)"*'; k)[eg']. Now, we also have
. C*(BT" k) ~ kleq, ..., en], el = =2,

and the map C*(BT" " k) — C*(B(Z/p)"*'; k) sends the {e;} to the {e;}. This map is a faithful T"*-
Galois extension. As we did for C*(B(Z/p)"*';k), consider the localization C*(BT"*';k)[ey?], whose
homotopy groups are given by
(42) W*C*(BTn+17k)[60_1}Zk[eatlafh7fn]a |fZ|:O7
where for i > 1, fi = e;/ep. In particular, the Galois theory of C*(BT"*!;k)[e;!] is algebraic thanks to
Theorem and by (41)), we have an exact sequence
(43) Z" = mMod(C*(B(Z/p)" 1 k)[eg]) — mMod(C* (BT k)[eg!]) — 1
Our argument will be that the first map is necessarily zero, which will show that the Galois theory of
C*(B(Z/p)"+*;k)[eg '] is algebraic as desired. In order to do this, we will use a naturality argument.

We can form the completion

A= C*(BT™ k) e ]

(flv---vfn)’
at the ideal (fy,..., fn), whose homotopy groups now become the tensor product of the Laurent series ring
klef!] together with a power series ring k[[f1, ..., fa]]. We will prove:
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Lemma 9.10. The Galois theory of A’ def 4 ®C= (BT +1;k) C*(B(Z/p)"*1; k) is entirely algebraic (and, in
particular, that of A).

PROOF. The E-ring A’ = A Q¢ (pra+1,6) C*(B(Z/p)"'; k), which by definition is the E.-ring ob-
tained from C*(B(Z/p)"*';k) obtained by inverting the generator ey and completing with respect to the
ideal (fi,..., fn), admits another description: it is the homotopy fixed points (k*2/P)MZ/P)" wwhere (Z/p)™
acts trivially Since we have computed the Galois theory of k'%/P (and found it to be algebraic), this,
together with Example [7.19] implies the claim. (]

Finally, consider the diagram

gntl ——— > (Mod(A")) m1(Mod(A)) ——— 1.

l | |

Zn+1 —— 1 Mod(C*(B(Z/p)"+1; k)[eal]) — 1 Mod(C*(BT"+1; k:)[egl]) — 1

In the top row, in view of Lemma the map out of Z"+1 must be zero. It follows that the same
must hold in the bottom row. In other words, the Galois theory of C*(B(Z/p)"*'; k)[ey '] is equivalent to
the (algebraic) Galois theory of C*(BT™*';k)[eg']. As we saw at the beginning, this is precisely the step
we needed to see that the Galois theory of the Tate construction kY is “locally” algebraic over P(V,Y), and
this completes the proof of Theorem O

Remark 9.11. This argument leaves open a natural question: is the Galois theory of a general localization
C*(B(Z/p)" ™1 k)[f~1] algebraic?

9.5. General finite groups. Let G be any finite group. In this section, we will put together the
various pieces (in particular, Theorem and Quillen stratification theory) to give a description of the
Galois group of the stable module co-category Stg(k) over a field k of characteristic p > 0. Unfortunately,
our answer will be in the form of the fundamental group of a certain simplicial set, which we do not know a
simpler expression for in general (e.g., whether or not the Galois group is finite), but we will describe it in
a couple of examples.

For each subgroup H C G, recall the commutative algebra object Ay =[5,z k € CAlg(Modg(k)).
Ap has the property that Modyiea (k) (Arr) ~ Mody (k), and the adjunction Modg (k) = Modioag (k) (Am)
whose left adjoint tensors with Ay can be identified with restriction to the subgroup H. We will need an
analog of this at the level of stable module categories.

Proposition 9.12. Let o7y € CAlg(Stg(k)) be the image of Ay in the stable module co-category. Then we
can identify Mod g, (Sta(k)) ~ Sty (k) and we can identify the adjunction Stg(k) = Modgy, (Ste(k)) with
the adjunction whose left adjoint is Stg(k) — Sty (k) is restriction.

PRrROOF. Consider an &/-module object M € Stg(k). To form the associated object in Sty (k), first
restrict H to Stz (k) to form an Res% (<7 )-module object Res$ (M) € Sty (k). Now Res$ (<), which is now
a commutative algebra object in Sty (k), has a canonical idempotent ey corresponding to the identity coset
in G/H, which is H-invariant, and we can invert this idempotent to obtain a new object Res% (M)[eg'] €
Sty (k). Observe that Res% («/g)[e'] is the unit object of Sty (k).

This is precisely the stable module version of the construction that one would do at the level of rep-
resentation categories. In any event, all operations here were symmetric monoidal (including the inversion
of idempotents at the last step, since Res§(o/)[eg'] ~ 1), so we obtain a symmetric monoidal, colimit-
preserving functor

F: Mod,, (Stg(k)) — Sty (k),

which we need to prove is an equivalence.

5In general, the formation of homotopy fixed points do not commute with localization from k"Z/P to ktZ/P: the failure is
precisely measured by the need to take the completion.
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To see that F' is fully faithful, we observe that it preserves compact objects, so we need to show that if
M, M’ € Mod 4, (Stg(k)) are compact objects, then

F': Homyod,,, (ste (k) (M, M") — Homgy, () (F(M), F(M"))

is an equivalence. By duality, we may reduce to the case M = 1, and by taking finite colimits, we may
reduce to the case where M’ ~ o/ ® V' for some V' € Stg(k) compact, represented by a finite-dimensional G-
representation. In this case, our assertion is that the natural map on Tate constructions (] ] JH ko V)E —
VtH is an equivalence, which is true (by the projection formula).

Finally, we need to see that F' is essentially surjective. However, given any N € Sty (k), we can induce
up to an object of Stg, and the image of that under F' is N again. |

Proposition [9.12] suggests that we can perform a type of descent in stable module oo-categories by
restricting to appropriate subgroups. In particular, we can hope to reduce the calculation of certain invariants
in St (k) to those of Sty (k) where H C G are certain subgroups, by performing descent along commutative
algebra objects of the form o7;. We shall carry this out for the Galois group.

Let G be any finite group, and let A be a collection of subgroups of G such that any elementary abelian
p-subgroup of G is contained in a conjugate of an element of A. For each H € A, we consider the object
HG/H k € CAlg(Modg(k)).

Proposition 9.13. The commutative algebra object A = []yc4 (HG/H k) € CAlg(Modg(k)) admits de-
scent.

PROOF. In order to prove this, by Theorem [4.8] it suffices to prove that the above commutative algebra
admits descent after restriction from G to each elementary abelian p-subgroup. However, when we restrict
from G to each elementary abelian p-subgroup, the above commutative algebra object contains a copy of the
unit object as a direct factor (as commutative algebras), so that it clearly admits descent. O

In particular, it follows that the image o/ € CAlg(Ste(k)) of the above commutative algebra object
A=Tlpeca (HG/H k) € Modg (k) in the stable module co-category also admits descent. From this, we can
attempt to do “descent” in the stable module oo-category, along 1 — . Moreover, in view of Proposi-

tion Modgs, (k) () is a product, over H € A, of copies of St (k), and so can be understood inductively.
Similarly, we have

(44) A A~ ] I *] € CAlg(Moda(k)),

HH' €A \G/HXG/H'
and, if we decompose G/H x G/H' into transitive G-sets (e.g., using double cosets), then we can understand
Modgs, (k) (7 @ 47) as a product of copies of of stable module co-categories for various subgroups of G' (which
need not belong to A now). Doing the same for & ® & ® o/, we can obtain the fundamental groupoid of
Stg (k) as a geometric realization of a simplicial object in profinite groupoids.

For example, suppose A is the collection A of all nontrivial elementary abelian p-subgroups of G. In
this case, we find from that A® A, and similarly A® A ® A, is a product of copies of [[ JH k where H
ranges over various elementary abelian (but possibly trivial) subgroups of G. In particular, when we take
the image in Stg(k), all the fundamental groupoids are discrete finite sets, in view of Theorem with
a contribution of one point for each factor of the form J], sk whenever H C G is nontrivial. The stable
module co-category over a trivial group is the zero category and has an empty Galois groupoid.

We find that

m<1(Modse gy (7)) ~ | ]+,
HeAq

m<1(Modsy (k) (2 @ 7)) ~ L] %,
H,H'€A,SCG/HXG/H'

where S C G/H x G/H' is a transitive G-subset which is not free. This decomposition is a consequence of
together with Theorem More generally, if we consider the cosimplicial object &7 ®(®+1) the cobar
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construction on &7, then the fundamental groupoids fit naturally into a simplicial object in the category of
finite sets.

Definition 9.14. Given a finite group G (and the fixed prime number p), we define the simplicial set Q,(G)o
such that

Qp(G)n ={(Ho,...,H,) CGand SCG/Hyx---xG/Hy,},
where Hy,..., H, are nontrivial elementary abelian p-subgroups of G, and S is a transitive G-subset of
G/Hy x - -+ x G/H, which is not free.

More precisely, we consider the G-set T' = | |;; - G/H, where the disjoint union is over all elementary
abelian subgroups H C G. We now form the “bar construction” simplicial set

By={..5TxT3T}

on the map T — . This is a contractible simplicial set with a G-action. Consider the simplicial subset
B, C B, where we throw out all n-simplices (for each n) which are acted on freely by G, and now consider
the quotient simplicial set B, /G. Then Q,(G)s = B, /G.

The simplicial set Q,(G) is precisely <1 (Modgy,, () (&7®**t1)), s0 in view of Theorem [9.9(and the Quillen
stratification theory, we get:

Theorem 9.15. If k is a separably closed field of characteristic p, then the Galois group of Stg(k) is the
profinite completion of the fundamental group of the simplicial set Q,(G).

Unfortunately, we do not know in general an explicit description of the fundamental group of Q,(G).
We will give a couple of simple examples below.

Theorem 9.16. (1) Let G be a finite group whose center contains an order p element (e.g., a p-group).
Then the Galois group of Stg(k) is the quotient of G by the normal subgroup generated by the order
p elements: the functor
Modg (k) — Sta(k),
induces an isomorphism on fundamental groups.
(2) Suppose G is a finite group such that the intersection of any three p-Sylow subgroups of G is
nontrivial. Then Modg (k) — Stg (k) induces an isomorphism on fundamental groups.

PROOF. Consider the first case. Choose an order p subgroup C contained in the center of G, and consider
the collection A of all nontrivial elementary abelian p-subgroups of G which contain C. We form the object
A=]lyeall nk € CAlg(Modg(k)) as before. Since every mazimal elementary abelian p-subgroup of G
contains C, it follows that A € CAlg(Mod¢ (k)) admits descent. Let o/ € CAlg(Ste(k)) be its image, and
consider the cobar constructions

AZAQAS ..., d3dd ...
By descent theory, it will suffice to show that, for each n, the natural functor
Modyode (k) (A®") = Modsg (k) (27 %™)

induces an equivalence on fundamental groupoids.

Now, we know that the fundamental groupoid of A®™ is discrete, and has one connected component for
every tuple (Ho, ..., H,) C A together with an orbit type in G/Hy x - - - x G/ H,,, thanks to the calculation in
Theorem [7.16]of the Galois theory of Mod (k) where A is elementary abelian. We know that the fundamental
groupoid of &®™ is discrete as well and has one connected component for each tuple (Ho,...,H,) C A
together with an orbit in G/Hy % ...G/H,, which has nontrivial isotropy. However, we observe that C' acts
trivially on any G-set of the form G/Hy x --+ x G/H,, so that the isotropy is always nontrivial, and this
condition affects nothing. This proves the first item.

For the second case, let G be a finite group such that the intersection of any three p-Sylows in G
is nontrivial. We fix a p-Sylow P C G and consider the commutative algebra object B = [], / pk €
CAlg(Modg(k)) and its image & € CAlg(Stg(k)). We observe that B, B ® B, B ® B ® B have the same
fundamental groupoids as B, B R B, B R B & A, respectively: in fact, this follows from the previous item
(that the Galois groups for Mody (k) and Sty (k) where H is a nontrivial p-group are isomorphic), since by
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hypotheses the G-set G/P x G/P x G/P has no free component to it. Therefore, by descent theory, the
Galois groups of Modg (k) and St (k) must be isomorphic; note that the Galois group only depends on the
3-truncation of the descent diagram.

]

On the other hand, there are cases in which there are finite covers in the stable module co-category that
do not come from the representation category.

Theorem 9.17. Let G be a finite group such that the maximal elementary abelian p-subgroup of G has rank
one (i.e., there is no imbedding Z/p x Z/p C G) and any two such are conjugate. In this case, the Galois
group of Stg (k) is the Weyl group of a subgroup Z/p C G.

Proor. WefixaZ/p C G and consider the commutative algebra object & = [[5 /7, k € CAlg(Sta (k).
Our claim is that this is W (Z/p)-Galois for W(Z/p) the Weyl group. Since Modgy (g (=) =~ Stz (k), it will
follow (by Theorem that 7 is the “Galois closure” of the unit object.

Indeed, < has an action by the Weyl group, acting by permutations on the right. (In general, the
automorphisms of the G-set G/H is precisely the Weyl group of H.) Moreover, & ® & ~ Hg/Z/pr/Z/p k
and, in the orbit decomposition of direct product G/Z/p x G/Z/p as a G-set, we get a disjoint union of
copies of G/Z/p (one for each element of the Weyl group) together with various copies of G itself, which do
not contribute in the stable module co-category. More precisely, if we choose double coset representatives
~; for Z/p\G/Z/p, then the G-set G/Z/p x G/Z/p decomposes as

G/Z/p x G|Z[p ~ |_| G/(Z/p v {(Z/p)v;)-

J

The orbits with nontrivial isotropy come from those v; that normalize the Z/p. O

For example, we find that the Galois group of the stable module co-category of ¥, is precisely a (Z/p)*,
which is the Weyl group of a Z/p C ¥,. We can see this very explicitly. The Tate construction k¥ has
homotopy groups given by

T (k7)) ~ E(ag,_1) ® P(ﬁi{zﬁ

whereas we have k*2/P ~ E(a_1) ® P(8f"). The extension k' — k*2/? is Galois, and is obtained roughly
by adjoining a (p — 1)st root of the invertible element S2,_s.

10. Chromatic homotopy theory

In this section, we begin exploring the Galois group in chromatic stable homotopy theory; this was the
original motivating example for this project. In particular, we consider Galois groups over certain E,-local
E.-rings such as TMF and L,,S°, and over the co-category Lk (n)Sp of K(n)-local spectra.

10.1. Affineness and TMF. Consider the E.-ring TMF of (periodic) topological modular forms. Our
goal in this section is to describe its Galois theory. The homotopy groups of TMF are very far from regular;
there is considerable torsion and nilpotence in 7. (TMF) at the primes 2 and 3, coming from the stable stems.
This presents a significant difficulty in the computation of arithmetic invariants of TMF and Mod(TMF).

Nonetheless, TMF itself is built up as an inverse limit of much simpler (at least, simpler at the level of
homotopy groups) E-ring spectra. Recall the construction of Goerss-Hopkins-Miller-Lurie, which builds
TMF as the global sections of a sheaf of E.,-ring spectra on the étale site of the moduli stack of elliptic
curves M. Given a commutative ring R, and an elliptic curve C' — SpecR such that the classifying map
SpecR — M,y is étale, the construction assigns an E.-ring O%P(SpecR) with the basic properties:

(1) O*P(SpecR) is even periodic.
(2) We have a canonical identification moO"P(SpecR) ~ R and a canonical identification of the formal

group of O'P(SpecR) and the formal completion C.
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The construction makes the assignment (SpecR — M) — O™P(SpecR) into a functor from the affine
étale site of M, to the co-category of E..-rings, and one defines

(45) TMF = D(Mey, 0*P) = lim  O'P(SpecR).
SpecR— My

The moduli stack of elliptic curves is reqular: any étale map SpecR — M, has the property that R is
a regular, two-dimensional domain. The Galois theory of each O'P(SpecR) is thus purely algebraic in view
of Theorem It follows that from the expression that we have a fully faithful imbedding

(46) Mod“(TMF) C lim Mod“ (O*P(SpecR)),

SpecR— M.y,
which proves that an upper bound for the Galois group of TMF is given by the Galois group of the moduli
stack of elliptic curves. It is a folklore result that the moduli stack of elliptic curves, over Z, is simply
connected. Therefore, one has:

Theorem 10.1. TMF is separably closed.

Using more sophisticated arguments, one can calculate the Galois groups not only of TMF, but also
of various localizations (where the algebraic stack is no longer simply connected). This proceeds by a

strengthening of .

Definition 10.2. The oo-category QCoh(O'P) of quasi-coherent (O'°P-modules is the inverse limit
I'&nspccRﬁMe” Mod(O*P(SpecR)).

As usual, we have an adjunction
Mod(TMF) = QCoh(O"P),

since TMF is the Eo-ring of endomorphisms of the unit in QCoh(O*P). Tt is a result of Meier, proved
in [Meil2], that the adjunction is an equivalence: TMF-modules are equivalent to quasi-coherent O"P-
modules. In particular, the unit object in QCoh(O%P) is compact, which would not have been obvious a
priori. It follows that we can make a stronger version of the argument in Theorem We will do this
below in more generality.

In [MM13], L. Meier and the author formulated a more general context for “affineness” results such
as this. We review the results. Let Mpg be the moduli stack of formal groups. Let X be a Deligne-
Mumford stack and let X — Mpg be a flat map. It follows that for every étale map SpecR — X, the
composite SpecR = X — Mp¢ is flat and there is a canonically associated even periodic, Landweber-exact
multiplicative homology theory associated to it. An even periodic refinement of this data is a lift of the
diagram of homology theories to Eo-rings. In other words, it is a sheaf O%P of even periodic E.-rings on
the affine étale site of X with formal groups given by the map X — Mpg. This enables in particular the
construction of an E.-ring T'(X, O%P) of global sections, obtained as a homotopy limit in a similar manner
as , and a stable homotopy theory QCoh(OP) of quasi-coherent modules.

Now, one has:

Theorem 10.3 ([MM13, Theorem 4.1]). Suppose X — Mpq is a flat, quasi-affine map and let the sheaf
OtP of Eo-rings on the étale site of X define an even periodic refinement of X. Then the natural adjunction

Mod(T'(X, O%P)) = QCoh(O"P),

is an equivalence of co-categories.

In particular, in [MIM13| Theorem 5.6], L. Meier and the author showed that, given X — Mpg quasi-
affine, then one source of Galois extensions of T'(X, O'°P) was the Galois theory of the algebraic stack. If X
is regular, we can give the following refinement.

Theorem 10.4. Let X be a reqular Deligne-Mumford stack. Let X — Mpg be a flat, quasi-affine map and
fiz an even periodic sheaf O*°P as above. Then we have a canonical identification
71 (Mod(T'(X, O*P))) ~ 7§t X.
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PRrROOF. This is now a quick corollary of the machinery developed so far. By Theorem we can
identify modules over I'(X, O*P) with quasi-coherent sheaves of O'*P-modules. In particular, we can equiv-
alently compute the Galois group, which is necessarily the same as the weak Galois group, of QCoh(O%P).
Using

QCoh(O"™P) = lim Mod(O™P(SpecR)),
SpecR—X
where the inverse limit ranges over all étale maps SpecR — X, we find that the weak Galois groupoid of
QCoh(0O"P) is the colimit of the weak Galois groupoids of the various O"P(SpecR). Since we know that
these are algebraic (Theorem , we conclude that we arrive precisely at the colimit of Galois groupoids
that computes the Galois groupoid of X. O

In addition to the case of TMF, we find:

Corollary 10.5. (1) The Galois group of Tmf,) (for any prime p) is equal to the étale fundamental

group of Zy).
(2) The Galois group of KO is Z/2: the map KO — KU exhibits KU as the Galois closure of KO.

PROOF. The first claim follows because the compactified moduli stack of elliptic curves is geometrically
simply connected; this is even true over C via the expression as a weighted projective stack P(4,6). The
second assertion follows from Theorem [6.30} which shows that KU is simply connected, since SpecZ is. O

10.2. K(n)-local homotopy theory. Let K(n) be a Morava K-theory at height n. The oo-category
L (n)Sp of K(n)-local spectra, which plays a central role in modern chromatic homotopy theory, has been
studied extensively in the monograph [HS99]. Lk (,)Sp is a basic example of a stable homotopy theory
where the unit object is not compact, although Lg,)Sp is compactly generated (by the localization of a
finite type n complex, for instance). We describe the Galois theory of Ly (,)Sp here, following ideas of
[DHO04, BRO08, [Rog08|, and many other authors.

According to the “chromatic” picture, phenomena in stable homotopy theory are approximated by
the geometry of the moduli stack Mprg of formal groups. When localized at a prime p, there is a basic
open substack M ;g of Mpqg parametrizing formal groups whose height (after specialization to any field of
characteristic p) is < n. There is a closed substack Mz, C M ;g parametrizing formal groups of height
ezactly n over Fy-algebras. The operation of K (n)-localization corresponds roughly to formally completing
along this closed substack (after first restricting to the open substack M Fég, which is E,-localization). In
particular, the Galois theory of Lk ,)Sp should be related to that of this closed substack.

It turns out that Mg has an extremely special geometry. The closed substack M, is essentially the
“classifying stack” of a large profinite group (with a slight Galois twist) known as the Morava stabilizer
group.

Definition 10.6. Let k = F, and consider a height n formal group X over k. We define the nth Morava
stabilizer group G,, to be the automorphism group of X (in the category of formal groups).

Any two height n formal groups over k are isomorphic, so it does not matter which one we use.

Definition 10.7. We define the nth extended Morava stabilizer group G®* to be the group of pairs
(0,¢) where o € Aut(F,/F,) and ¢: X — ¢*X is an isomorphism of formal groups.

In fact, X can be defined over the prime field F), itself, so that ¢*X is canonically identified with X, and
in this case, every automorphism of X is defined over Fp». This gives G,, a natural profinite structure (by
looking explicitly at coefficients of power series), and G&* ~ G,, x Gal(F,/F,).

The picture is that the stack Mz is the classifying stack of the group scheme of automorphisms of
a height n formal group over F,. This itself is a pro-étale group scheme which becomes constant after
extension of scalars to F,». This picture is justified by the result that any two n formal group are étale
locally isomorphic, and the scheme of automorphisms is in fact as claimed.

This picture has been reproduced closely in chromatic homotopy theory. Some of the most important
objects in Ly (,,)Sp are the Morava E-theories E, . Let k be a perfect field of characteristic p and let X be a
formal group of height n over &, defining a map Speck — Mp, . The “formal completion” of Mg along this
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map can be described by Lubin-Tate theory; in other words, the universal deformation X,y of the formal
group X lives over the ring W (k)[[v1,...,vn—1]] for W(k) the ring of Witt vectors on x. The association
(K, X) = (W(&)[[v1,- -, Vn-1]], Xuniv) defines a functor from pairs (x, X) to pairs of complete local rings and
formal groups over them.

The result of Goerss-Hopkins-Miller [GHO04), [Rez98] is that the above functor can be lifted to topology.
Each pair (W (k)[[v1,-..,Vn-1]], Xuniv) can be realized by a homotopy commutative ring spectrum E,, =
E,(x;X) in view of the Landweber exact functor theorem. However, in fact one can construct a functor
(essentially uniquely)

(k,X) = E,(k; X)

to the oo-category of E..-rings, lifting this diagram of formal groups: for each (k,X), E,(k;X) is even
periodic with formal group identified with the universal deformation X,y over W (&)[[v1, ..., vp—1]]-
We formally now state a definition that we have used before.

Definition 10.8. Any E,(x;X) will be referred to as a Morava E-theory and will be sometimes simply
written as F,,.

Since M2 is the classifying stack of a pro-étale group scheme, we should expect, if we take k = F,,
an appropriate action of the extended Morava stabilizer group on E,,(x; X). An action of the group G&*' is
given to us on E,(k;X) by the Goerss-Hopkins-Miller theorem. However, we should expect a “continuous”
action of G on E,(k;X) whose homotopy fixed point co-category is L K(n)SO (and a “continuous” action
of G5** on Mod(E,,(k; X)) whose homotopy fixed points are L (,)Sp).

Although this does not seem to have been fully made precise, given an open subgroup U C G,
Devinatz-Hopkins [DH04] construct homotopy fixed points E,(x; X)"U which have the desired properties
(for example, if U C G&*, one obtains Ly (,)S°). It was observed in [Rog08] that for U C G&* normal, the
maps

LmyS® = En(r; X)"Y

are G /U-Galois in Lk (,)Sp; they become étale after base-change to E,(x;X). The main result of this
section is that this gives precisely the Galois group of K (n)-local homotopy theory.

Theorem 10.9. The Galois group of Lk (»)Sp (which is also the weak Galois group) is the extended Morava
stabilizer group GE**.

Away from the prime 2, this result is essentially due to Baker-Richter [BRO8]. We will give a direct
proof using descent theory. Let E, be a Morava E-theory. Using descent for linear oco-categories along
L,S% = E,,, we find:

Proposition 10.10. E, € CAlg(Lxn)Sp) satisfies descent. In particular, we have an equivalence

N —
Lic(mSp ~ Tot (LK(")Mod(En) = Lic(myMod(Lic () (En ® En)) = . ) .

PRrOOF. This follows directly from the fact that since the cobar construction L,S° — E, defines a
constant pro-object in Sp (with limit L,,S?), it defines a constant pro-object (with limit LK(,L)SO) in Lgn)Sp
after K (n)-localizing everywhere. O

Therefore, we need to understand the Galois groups of stable homotopy theories such as L (,yMod(E,).
We did most of the work in Theorem although the extra localization adds a small twist that we should
check first.

Let A be an even periodic Eo-ring with mgA a complete regular local ring with maximal ideal m =
(x1,...,2Tn), where 1, ..., T, is a system of parameters for m. Let k(A) = A/(x1,...,x,) be the topological
“residue field” of A, as considered earlier.

Proposition 10.11. Given a k(A)-local A-module M, the following are equivalent:
(1) M is dualizable in L, 4)Mod(A).
(2) M is a perfect A-module.
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PROOF. Only the claim that the first assertion implies the second needs to be shown. If M is dualizable
in L,4)Mod(A), then it follows that, since the homology theory k(A). is a monoidal functor, x(A).(M)
must be dualizable in the category of graded x(A).-modules. In particular, k(A)o(M) and k(A);(M) are
finite-dimensional vector spaces. From this, it follows that . (M) itself must be a finitely generated . (A)-
module, since 7, (M) is (algebraically) complete. For example, given any i, we show that the mo(A4)-module
mo(M/(x1,...,2;)M) is finitely generated by descending induction on ¢; when i = 0 it is the assertion we
want. When i = n, the finite generation follows from our earlier remarks. If we know finite generation at 1,
then we use the cofiber sequence

M/(Ih...,l‘i_l) ﬁM/(Il,...,Z‘i_l) —)M/($1,...,ZCZ‘),

to find that

mo(M/(21,...,2i-1)) ®roca) To(A)/(x:) C mo(M/(1,...,25)),
is therefore finitely generated. However, by the x;-adic completeness of mo(M/(x1,...,x;-1)), this implies
that wo(M/(x1,...,2;—1)) is finitely generated.

Finally, since m.(A) has finite global dimension, this is enough to imply that M is perfect as an A-
module. ]

PrROOF OF THEOREM [[0.9] We thus get an equivalence
CAlg™ (L g (n)Sp) =~ Tot (CAIg‘”'“’V(LK(n)Mod(En)) = CAIg™ ™ (L (n)Mod(Ey © En)) 3 . ) :

However, we have shown, as a consequence of Proposition[10.11|and Theorem that CAlg™ “” (L g (,yMod(E,))
is actually equivalent to the full subcategory spanned by the finite étale commutative algebra objects. Since
finite étale algebra objects are preserved under base change, we can replace the above totalization via

CAIg" (L (m)Sp) ~ Tot (CAlgW'COV(LK(n)Mod(En)) = CAIgY ™ (L (myMod(Ey ® E,)) 5 ... ) ,

alg alg

where the subscript alg means that we are only looking at the classical finite covers, i.e., the category is
equivalent to the category of finite étale covers of my. In other words, we obtain a cosimplicial commuta-
tive ring, and we need to take the geometric realization of the étale fundamental groupoids to obtain the
fundamental group of L g (,,)Sp.

Observe that each commutative ring mo L i () (E®™) is complete with respect to the ideal (p,v1,...,vn_1),
in view of the K (n)-localization. The algebraic fundamental group is thus invariant under quotienting by
this ideal. After we do this, we obtain precisely a presentation for the moduli stack M}, so the Galois
group of L (,)Sp is that of this stack. As we observed earlier, this is precisely the extended Morava stabilizer
group. O

10.3. Purity. We next describe a “purity” phenomenon in the Galois groups of E..-rings in chromatic
homotopy theory: they appear to depend only on their Li-localization. We conjecture below that this is
true in general, and verify it in a few special (but important) cases.

We return to the setup of Section Let R be an E-ring that arises as the global sections of the
structure sheaf (“functions”) on a derived stack (X, 0'P) which is a refinement of a flat map X — Mpg.
Suppose further that (X, O'P) is O-affine, and that X is regular.

In this case, we have:

Theorem 10.12 (KU-purity). The map R — Ly R induces an isomorphism on Galois groups.

In order to prove this result, we recall the Zariski-Nagata purity theorem, for which a useful reference is
Exposé X of [Gro05].

Theorem 10.13 (Zariski-Nagata). Let X be a regular noetherian scheme and U C X an open subset such
that X \ U has codimension > 2 in X. Then the restriction functor establishes an equivalence of categories
between finite étale covers of X and finite étale covers of U.

If X is instead a regular Deligne-Mumford stack, and U C X is an open substack whose complement
has codimension > 2 (a condition that makes sense étale locally, and hence for X), then it follows from the
above and descent theory that finite étale covers of X and U are still equivalent.
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PrROOF OF THEOREM [10.121 Namely, first we work localized at a prime p, so that Lxy ~ Ly. In this
case, the result is a now a direct consequence of various results in the preceding sections together with
Theorem [10.13

Choose a derived stack (X, O*P) whose global sections give R; suppose X is an even periodic refinement
of an ordinary Deligne-Mumford stack X, with a flat, affine map X — Mpg. Then L; R can be recovered
as the E.-ring of functions on the open substack of (X, O%P) corresponding to the open substack U of X
complementary to closed substack cut out by the ideal (p,v1). The derived version of U is also 0O-affine, as
observed in [MM13| Proposition 3.27].

Now, in view of Theorem [10.4] the Galois group of L R is that of the open substack U, and the Galois
group of R is that of X. However, the Zariski-Nagata theorem implies that the inclusion U C X induces
an isomorphism on étale fundamental groups. Indeed, the complement of U C X has codimension > 2 as
(p,v1) is a regular sequence on X by flatness and thus cuts out a codimension two substack of X.

To prove this integrally, we need to piece together the different primes involved. This is slightly trickier
and will require some work. The main result we shall use is Theorem [6.21] above, which states that, for a
finite group G, the functor

A Galg(A), CAlg — Caty,
which sends an E..-algebra to the groupoid of G-Galois extensions of A, commutes with filtered colimits (in
A). This is the crucial step in reducing the problem to one that can be solved one prime at a time.

Assuming this statement, let us complete the proof. Given any E.,-ring A, it follows from descent theory
that there is a sheaf Galg of (ordinary) categories on the Zariski site of SpecmgA, such that on a basic open
affine Uy = SpecmoA[f~!] C SpecmpA, Galg(Uy) is the groupoid of G-Galois extensions of the localization
A[f~1]. The relevance of this statement is that it identifies the stalks of Galg over each p € SpecA as the
category of G-Galois extensions of A,. Thus we can prove:

Lemma 10.14. Fiz a finite group G. Let R — R’ be a morphism of Ex-rings with the following properties:

(1) R — R’ induces an equivalence of categories Galg(R(,)) — Galg(REp)) for each p.
(2) Rg — Ry induces an equivalence of categories Galg(R(y)) — Galg(R'(p))

Then the natural functor Galg(R) — Galg(R') is an equivalence of categories.

PRrROOF. By the above, there is a sheaf Gal(G; R) (resp. Gal(G; R')) of categories on SpecZ, whose
value over an open affine SpecZ[N ~!] is the category of G-Galois extensions of R[N ~!] (resp. of R'[N~1]).
These are the pushforwards of the sheaves Galg on SpecmyR, SpecmgR’ discussed above. Now Theorem
together with the hypotheses of the lemma, imply that the map of sheaves Gal(G; R) — Gal(G’; R) induces
an equivalence of categories on each stalk over every point of SpecZ. It follows that the map induces an
equivalence upon taking global sections, which is the conclusion we desired. O

This lemma let us conclude the proof of Theorem [10.12}] Namely, the map R — Lk R satisfies the two
hypotheses of the lemma above, since in fact Rg ~ (Lg R)g, and we have already checked the p-local case
above. (]

Using similar techniques, we can prove a purity result for the Galois groups of the E,-local spheres.

Theorem 10.15. The Galois theory of L,S° is algebraic and is given by that of ZLp)-

PROOF. We can prove this using descent along the map L, S° — E,. Since this map admits descent,
we find that

CAIg™ (L,8°) ~ Tot (CAlgCOV(En) 2 CAIE™ (B, ® B,) S .. ) .

Now, E,, ® E,, does not have a regular noetherian my. However, CAlg®"(E,,) is simply the ordinary category
of finite étale covers of myF,,, in view of Theorem [6.30] Therefore, we can replace the above totalization by
the analogous totalization where we only consider the algebraic finite covers at each stage (since the two are
the same at the first stage). In particular, since the cosimplicial (discrete) commutative ring

70(En) S m0(En ® Bn) > ...,
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is a presentation for the algebraic stack M ;g of formal groups (over Z,)-algebras) of height < n, we find that
the Galois theory of L,,SY is the Galois theory of this stack. The next lemma thus completes the proof. [

Lemma 10.16. Forn > 1, the maps of stacks Mgg — Mpg — Zp) induce isomorphisms on fundamental
groups.

PROOF. The moduli stack of elliptic curves Mpg has a presentation in terms of the map SpecL — Mpg,
where L is the Lazard ring (localized at p). L is a polynomial ring on a countable number of generators
over Z,y. Similarly, SpecL Xz, SpecL is a polynomial ring on a countable number of generators over
SpecZyy. The étale fundamental group of Z,)[1,...,x,] is that of Z,), and by taking filtered colimits,
the same follows for a polynomial ring over Z,) over a countable number of variables. Thus, the étale
fundamental group Mp¢ is that of SpecZ,). The last assertion follows because, again, the deletion of the
closed subscheme cut out by (p,v1) does not affect the étale fundamental group in view of the Zariski-Nagata
theorem (applied to the infinite-dimensional rings by the filtered colimit argument). (]

The above results suggest the following purity conjecture.

Conjecture 10.17. Let R be any L,-local Eo,-ring. The map R — LiR induces an isomorphism on
fundamental groups.

Conjecture[I0.17is supported by the observation that, although not every L,-local E.-ring has a regular
mo (or anywhere close), L,-local E.-rings seem to built from such at least to some extent. For example, the
free K(1)-local E,-ring on a generator is known to have an infinite-dimensional regular .

Remark 10.18. Conjecture cannot be valid for general L,,S°-linear stable homotopy theories: it is
specific to Eq-rings. For example, it fails for Ly ,,)Sp.

11. Conclusion

To conclude, we list a number of seemingly natural questions about Galois groups that have not been
addressed in this paper.

(1) In Proposition we showed that if A — B is a faithfully flat morphism of E.-ring spectra with
7« (A) countable, then A — B admits descent. Can the countability hypothesis be removed (even
if A, B are discrete)?

(2) Describe the Galois group(oid) of G-equivariant stable homotopy theory for G a finite group or,
more generally, a compact Lie group. Similarly, describe the Galois group(oid) of motivic stable
homotopy theory.

(3) Describe the Galois groupoid of L (i )v...vk (i, )SP where ip < iy < -+ < ip.

(4) Describe the Galois group of stable module co-categories over a finite-dimensional cocommutative
Hopf algebra over a field (or, equivalently, a finite group scheme). We would expect that, for an in-
finitesmal group scheme G, the Galois theory of the stable module co-category of G-representations
is algebraic.

(5) Give more explicit computations of the Galois groups of Stg(k) where G is a finite group; in
particular, are the resulting groups always finite?

(6) Given a map Z/p?> — A of E.-rings, is the Galois group of A equal to that of A ®z/p2 L[p?
Theorem provides an affirmative answer in the very restricted case of an E,.-ring which is
eventually connective. One could ask the same question for the quotient of a discrete ring by a
square-zero ideal.

(7) The Galois group of a rational E..-ring is not always algebraic: for instance, let Q[t4] be the free
E..-ring over Q on a generator in degree four, and define Q[ug] similarly. The map Q[tT!] — Q[ui]
sending t4 — u2 is Z/2-Galois. However, we are aware only of examples like this, and one could hope
for a global picture of the Galois groups of rational E.-rings (i.e., the part that is not algebraic).
Theorem B8 is evidence in this direction.

(8) Prove or disprove Conjecture the Galois group(oid) of an E,-local Ey-ring is equivalent to
that of its L;-localization. For starters, is it true that if R is E,-local, then R and Rg have the
same idempotents?
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