FINDING THE BEST MODEL FOR CONTINUOUS
COMPUTATION

REBECCA ABIGAIL RESNICK

ABSTRACT. While the theory of computability over countable sets is well-
defined and flexible, the definition of computability over continuous sets (e.g.
the real numbers), without the fortification provided by the Church-Turing
Thesis, is much more contentious. Since Turing’s introduction of a universal
device for computation over countable sets (the “universal Turing Machine”),
several demonstrably non-equivalent formalizations of the intuitive notion of
continuous (alternately: analog) computation, and more specifically, computa-
tion over the real numbers, have been proposed. None of these is yet accepted
by the majority of mathematicians, and, as a result, the contemporary land-
scape of research into continuous computation is factional. I will present and
compare several of dominant theories of continuous computation, including
techniques from recursive analysis and the Blum-Smale-Shub model.

1. INTRODUCTION

Continuous computation tries to answer the question of how to define the concept
of computability in non-discrete situations. In contrast to the discrete case, in
which the Church-Turing thesis and related, provably equivalent models' provide
fortification for our intuition with regards to the definition of computability, the
intuition for what it means to compute a quantity or set of values in the continuous
case is much less well-defined. To date, no single model of continuous computation
has been accepted as canon in the same manner as Turing’s model for discrete
computability. Moreover, several demonstrably non-equivalent models have been
proposed [BSS89, Mo0095, Koi97, BHO6].

In this paper, I will discuss two prominent, non-equivalent models of continuous
computation and related variations: recursive (or computable) analysis, described
initially by Gryzegorczyk [Grz55, Grz57] and Lacombe?, and the Blum-Smale-Shub
(BSS) model [BSS89]. The basic attributes of these models are described very
briefly below:

(1) Recursive analysis. This model of continuous computation is based
on the definition of computable functionals as introduced by Grzegorczyk
[Grz55, Grz57]. Recursive analysis gets at the problem of computing on
infinitely long decimal representations (i.e. real numbers) by developing

Submitted on March 21, 2011. The author is an undergraduate senior honors candidate in
Mathematics at Harvard University.
Isee [LS01] in particular for a description of Diophantine equations as an equivalent model of
classical computation.
2The complete citation information for Lacombe’s article is:
D. Lacombe, Extension de la notion de fonction rcursive aux fonctions dune ou plusieurs vari-
ables relles, C. R. Acad. Sci. Paris, 240 (1955), 2478-2480; 241 (1955), 13-14, 151-153.
I was unable to find a copy of Lacombe’s article. Luckily, as we shall see in section 3.2,
Grzegorczyk describes Lacombes definition of real computability in order to prove it equivalent

to his own.
1

2 REBECCA ABIGAIL RESNICK

a system of increasingly accurate approximations [PR89, Wei95, Wei97].
This model has applications in analysis, and topology, and physics [PR89,
Mo096, BHOG6].

(2) The Blum-Smale-Shub (BSS) model [BSS89], and related variations
[Ko0i97, Bra97, Zho98]. The BSS model assumes the compression of infinite-
length operations into finite time and seeks to algebratize the theory of
continuous computation to the greatest degree possible, along the lines of
the algebraic circuits of computational complexity theory [AB09]. Unsur-
prisingly, this model has potential and demonstrated ramifications within
computational complexity theory [BSS89, BCSS97, BC06].

The non-equivalence of these models stems from a fundamental disagreement
over exactly what continuous computation means, and what a model of it should
represent. Recursive analysis, which defines calculation over the real numbers as an
infinite sequence of classical calculations over the rationals (subject to uniformizing
and effectivizing constraints—see section 3), is a model of the way modern (non-
quantum) computers actually work. However, even from the perspective of com-
puter science, this is not the whole story. As we shall see in section 4, it is often
fruitful, when studying more theoretical aspects of computation, to make the as-
sumption of infinite precision, as in the BSS model.

The question may arise at this point in the mind of the reader of why continuous
computation is a fruitful area of research. The study of the theory of computation
is an attempt to formalize the rules that govern the way that computers, including
theoretical representations of computational devices, work. Yet one might argue
that the devices described within the study of continuous computation bear little
relation to anyone’s conception of reality. The very idea of continuous computabil-
ity, which assumes the existence of infinitely precise devices or at least infinitary
sequences of rational approximations, is a perversion of the viscerally intuitive no-
tion of classical computability, as formulated by Turing [Tur36] into a concept
which bears little relation to either the way that physical computers operate or the
theoretical way in which we think about calculating any given quantity.

To this theoretical objection, I offer two counterarguments, one practical and one
philosophical. As a practical consideration, as previously mentioned, the objects de-
fined within the study of continuous computation, while abstract in their own right,
have proved quite useful in areas of research outside of the realm of recursion theory.
The Blum-Smale Shub (BSS) model [BSS89] in particular has lead to recent de-
velopments in the field computational complexity theory, [BCSS97, BC06, AB09],
while the techniques of recursive analysis have been influential in analysis and
physics [PR89]. The BSS model and its applications will be presented in section 4
and recursive analysis will be explored in section 3. Even Moore’s model, [Mo095],
a younger and less-explored model of continuous computation based on functional
integration has demonstrated relations to descriptive set theory and potential ap-
plications within the study of neural nets [M0095].

On the philosophical side, it is worth noting that, although the contemporary
tools of continuous computation are physically unrealizable and, especially in the
case of the models of Blum-Smale-Shub and Moore, not easily approximated by
physically constructible objects®, the questions at the the center of the study of

3In contrast, Turing machines, while also physically untenable due to the infinite capacity of
their computing space, are easily approximated by physical machines; for example: computers.

FINDING THE BEST MODEL FOR CONTINUOUS COMPUTATION 3

continuous computation are extremely intuitive. The exact calculation of irrational
numbers, an archetypal problem within continuous computation, for example, is
impossible within the framework of classical computation. The fact that such num-
bers exist and that we can conceive of exact representations of them is itself a
justification for a finer filter for our definition of what is and is not computable.

As a secondary example of the inherence of continuous computation within the
mathematical universe, consider Steffensen’s method for calculating roots of real-
valued polynomials [DB03]. Without at least an intuitive notion of what it means
to compute on a real-valued function, this technique is meaningless. I will discuss
the decidability of Steffensen’s method with respect to continuous computation in
greater detail in section 4 on the Blum-Smale-Shub model.

2. BACKGROUND

Before entering into the murky waters that characterize contemporary research
in continuous computation, we make a brief introduction to the more fundamental
concept of computability itself. Turing gives a general definition of the nature of
computability as follows :

Definition 2.1. [Tur36] A number is computable if its decimal representation
can be calculated by finite means.

This statement is an appeal to intuition rather than a definition of terms. Turing
expects that the educated reader has a sufficiently standardized, if definitionally
nebulous, notion of what it means to calculate a quantity in using finite resources.
The shared nature of this fundamental intuition is, indeed, the crux of Turing’s
argument. By leaving the terms of his definition assertively vague, Turing opens the
door to all manners of models for computation. His argument, one half of the famous
Church-Turing thesis, is, roughly, that all “reasonable” models of computation are
equivalent. *

Turing goes on to specify several models for discrete computation and to prove
their equivalence. For the purposes of this exposition, I will use Turing machines
(Turing himself called them a- or automatic-machines [Tur36)), described briefly
below, as a model for discrete computation unless otherwise specified.

A Turing machine is, in the most general sense, an algorithm for describing a
computation. Turing machines model individual computations over a finite set of
symbols (the “alphabet”) as a series of steps which are recorded on an infinitely
long workspace (the “tape”). A given Turing machine may have only finitely many
configurations (called “states”), and in any step in the calculation, the only actions
that the Turing machine may make are to move one step in either direction on the
tape and/or to write or delete something from the the position on the tape that is
currently occupied. Formally:

4The Church-Turing thesis, which owes its moniker to Stephen Kleene [Kle52], is so-named
because it combines Church’s argument that the A-calculus is equivalent to recursive function
theory [Dav65] with Turing’s argument that that his invention, the Turing machine is equivalent
to recursive function theory [Tur36]. The Church-Turing thesis is, of course, unprovable in the
general case. However, by demonstrating the equivalence of three foremost models of computation—
recursion, A-calculus and Turing machines—Church’s and Turing’s arguments together provide
compelling evidence that any reasonable model of computation should, at the very least, agree
with Church’s and Turing’s ideas.

4 REBECCA ABIGAIL RESNICK

Definition 2.2. [Sip05] A Turing machine is a 7-tuple (S, X, T, §, so, Sa, Sr-) abid-
ing by the the following criteria:

(1) S,%,T are finite sets,

(2) S is the set of states,

(3) X is the input alphabet, with a “blank symbol”, U ¢ 3. At the beginning
of any calculation, all except for finitely many spaces on the tape are, by
default, populated by the blank symbol.

(4) T is the tape alphabet, with SU{U} C T". We assume that, at the beginning

of any computation, the Turing machine has only the input written on the

tape.
(5) 6: S xT = S xT x{L, R} is the transition function,
(6) so € X is the start state,
(7) sq € X is the accept state,
(8) and s, € X is the reject state.

For a more complete discussion of Turing machines and an introduction to dis-
crete computation, see [Sip05].

A number in R is then called “computable” in Turing’s sense if there is some
Turing machine that accepts, in finite time, only its decimal representation. That
is,

Definition 2.3. A number x € R is computable if there exists some Turing
machine T, such that

1 ry==
Laly) = { 0 : otherwise.

It is important to note that, for a number to be computable, the Turing machine
must decide whether to accept (return 1) or reject (return 0) on all inputs. Note
that the definition for a Turing machine does not prescribe this to be the case in
general. Nothing, a priori, precludes an arbitrary Turing machine from entering
an infinite loop of calculation on a given input and never returning an answer.
Turing machines that do reach an answer (or, to use the accepted parlance, halt)
on all inputs are called computable, or, synonymously, decidable or recursive.
Turing machines that do not have this very limiting property are called partial
computable or partial recursive.

This definition implies automatically that all rational numbers are computable
for any rational ¢ € Q with decimal representation ¢oq1G2qs3...¢qn (qx = “.” for
some k <mn,q; € {0,1,...,9} for all other ¢). Let T, be a Turing machine over the
alphabet ¥ = {0,1,...,9, “”}, with k 4+ 3 states, whose transition map ¢ is given
by the finite graph in figure 1.

Assume, at the outset of the computation, T,’s working tape contains the input
in its first k' spaces and is blank everywhere else. T, reaches the accept state
precisely when the input is the decimal representation of z and reaches the reject
states in all other cases. This concept of reaching a decision (accept or reject) on a
given input leads to a definition of computability for sets:

Definition 2.4. A set A C N is computable if there exists a Turing machine T}y
such that
1 :ned
Ta(n) = { 0 : otherwise.

FINDING THE BEST MODEL FOR CONTINUOUS COMPUTATION 5

Sstart

qo.R $1 qi.R S2 QR S3 EIE»R qn-1.R Sn qnR | Snt1 | ‘,R Saccept

A 4

Sreject

FI1GURE 1. A Turing machine which accepts only the rational num-
ber ¢ = qoq1 - - - ¢, and halts in the reject state on all other inputs.

Considering functions from N — N as subsets of N x N (members of which them-
selves can be coded as single natural numbers®), the definition of computability
for sets thus gives rise naturally to a definition of functional computability:

Definition 2.5. A function f : N — N is computable® if there exists a Turing
machine T’ such that

1 :m=f(n
Ty(n,m) = { 0 : otherw(ise).

While flexible, this definition of functional computability is quite limited. All
continuous functions and any function whose domain or range is non-discrete is
immediately disqualified by the inescapable presence of non-repeating decimals.
It is the narrowness of this definition of computability that drives the study of
continuous computation, which is alternately and illustratively called recursion over
the reals. In contrast to Turing’s insistence that the concept computability be
grounded in finite calculations, the study of continuous computation asks what
happens if we allow certain of our “means” of calculation to be infinite and even
uncountable.

3. RECURSIVE ANALYSIS

3.1. Background. In the search for a coherent definition of continuous computa-
tion, recursive analysis has an initial leg up in terms of understanding because it
relies, to the greatest degree of any of the models presented in this paper, on the ter-
minology and notation established within Turing’s model of classical computation.
In the most general sense, recursive analysis tries to address the computational dif-
ficulty of calculating on non-repeating decimals by using a sequence of computable
Turing machine-like devices to get an arbitrarily close approximation.

5[M0509} Let p(i) = p; be the ith prime number. Then a finite tuple of numbers, (to,...,tn)
is uniquely coded by the number

1
({to,...n)) =p Tt o pirtL.

6This definition is a slight alteration on Sipser, who states that a function f : N — N is
computable if there exists a Turing machine Ty such that T (n) finishes its calculation with only
f(n) written on the tape.

6 REBECCA ABIGAIL RESNICK

The intuitive foundation of recursive analysis is the conceptualization of real
numbers as limits of Cauchy sequences of rationals.” With this formulation in mind,
recursive analysis views a computation over the reals as a sequence of increasingly
accurate Turing-machine computations over the rationals. Recursive analysis puts
several significant restraints on the sequence of Turing machines used for a given
computation, most notably that each Turing machine is totally computable (recur-
sive) and that the specifics of the entire sequence are themselves computable from
the start. That is, we know exactly what the nth Turing machine in the sequence
will look like, even though we may not know the result of its computation for some
time. Formally,

Definition 3.1. [PR89] A sequence (ry), .y With 7, € Q is computable if there
exist computable functions a, b, s : N — N, such that for all k, b(k) # 0 and

1)S(k>b((:§.

This equation provides a coding of any rational number as a 3-tuple of inte-
gers (a,b,c), and allows us to code any sequence of rational numbers within three
computable sequences of integers (a(k),b(k),c(k)),cy- As with Cauchy sequences,
we wish to use these countable sequence (ry) of rationals to represent arbitrarily
close approximations of real numbers, so we must define a notion of the effectiveness
of such sequences in converging to real numbers:

TkZ(—

Definition 3.2. [PR89] Given x € R, a sequence (ry), .y With r;, € Q converges
effectively to x if there exists a computable function e : N — N such that for all
n € N, we have

k>e(n) = |ry—az<27".

This definition assures that if we wait long enough, our approximation will
always be within a certain distance of x and that this distance approaches 0 as
n — oo. The “all” in this definition is important because it assures that our ap-
proximations can only get better in later steps: once we enter a certain confidence
interval, we never leave it again. In the obvious way, we then define a real number
x to be a computable real (or simply “computable” if there is no ambiguity) if
there exists a computable sequence of rationals that converges effectively to x.

It is a jarring but relatively easy to prove fact that, defined in this manner,
not all computable real numbers can be compared effectively. More specifically, we
can devise a scenario in which we are be unable to determine whether or not two
numbers are equal. Let Q* = Q — {0}. We wish to show:

Fact 3.3. [PR89] Given a computable real number x, there is an effective procedure
for showing x € Q* if and only if x # 0

This fact seems just short of cyclic, but it speaks to the problems of providing
effective proofs using approximations, even very close ones, for real numbers when
0 is involved. The basic idea of the proof is that, for any real number x € Q*, we
can eventually bound z effectively away from 0. We provide a counterexample to
show that this is not the case for x = 0.

"This method of defining real numbers is the starting point for Pour-El and Richard’s [PR89]
discussion on Recursive Analysis. For a discussion of the construction of the reals as Cauchy
sequences of the rationals, see [KF75].

FINDING THE BEST MODEL FOR CONTINUOUS COMPUTATION 7

Proof. We follow the proof and example given in [PR89]. Suppose z > 0 is a
computable real and let (), .y be a computable sequence that converges effectively
to x. Let N = 0 and consider the following procedure:

(1) Compute e(N) and 7(y).

(2) If reny > 270, return “true.”

(3) N + +, return to step 1.

Since z > 0, this process must eventually terminate. Indeed, take N such that
2N < x/2. Then since we have [Te(ny — x| < 27N a quick triangle inequality gives
us re(nNy > 2—N,

The proof for z < 0 is analogous. Now consider x = 0. We show via coun-
terexample that there is not necessarily an effective procedure for demonstrating
that this is the case. To do so, we first note that a double sequence <‘T"7k>n,k€N
can be mapped onto a single-index sequence (arj>]. cn using the standard recursive
mapping from N x N — N 8 and thus, can be thought of as computable under the
same definition. We will also make use of the following fact:

Fact 3.4. (Closure Under Effective Convergence) [PR89] Let (x,, 1) be a computable
double sequence of real numbers such that x,, j; converges effectively to some number
Xy for each n as k — co. Then (x,) is computable.

The proof of this fact is straightforward (and not terribly interesting), so we
omit it.
Consider (n k), rcn given by [PR89]:

S 2=™ :if n = a(m) for some m < k,
k0 : otherwise.

Where a : N — N is an injective, recursive function which generates a recursively
enumerable, non-recursive set A. Then x,, ; — =, as k — oo where z,, is given by
the following:

S { 2=™ :if n = a(m) for some m,
10 : otherwise.

Whereas for each x,, x, we had to check only finitely many possible m’s to deter-
mine z, j, for x,, we are not so lucky. For each n, in order to determine whether
r, = 0, we need to know whether there exists any m among all natural numbers
such that a(m) = n. While a is recursive by definition, the successive calculation
of a(m) for (potentially) all m is not necessarily finite.

If we could show (x,) to be a computable sequence of real numbers as per
definition 3.1, then we would be done. For, as we have just described, we would
need to perform an infinite number of calculations in order to determine whether
z, = 0 for any n. Thus, there is no way to bound z,, effectively at 0, even though
it might be the case that z, = 0.

In order to show (z,) to be a computable sequence of real numbers, note that
Tn i # Tn only when there exists m such that a(m) = n, and the least such m > k.
Then we have z, ; = 0, and, by the way we define z,,, we have z,, = 27" < 27 k.
Thus, for all k, n,

8See footnote 5.

8 REBECCA ABIGAIL RESNICK

| — Tn| < 27k,
By fact 3.4, this implies that (x,) is computable. Thus, x,, is the number that
we sought. (|

Proponents of the Recursive Analysis model are untroubled by this inherent
uncertainty in comparing real numbers. Like the close cousins, physics and classi-
cal analysis, from which the techniques of Recursive Analysis stem, this model of
continuous computation relies heavily on approximation when exactitude is out of
reach. Pour-El and Richards [PR89] note that, while comparisons are not neces-
sarily possible for computable reals, they are possible for the computable sequence
of rationals from which computable reals are formed. Setting

we have an effective test for picking out the sequences {n : r,, = 0},{n : r, > 0}
and {n : r, < 0}. Namely

(1) r, =0 a(n) =0,

(2) 7, > 04> a(n) >0 and s(n) is even,

(3) rn < 0 otherwise.

This ideology, that approximations are inevitable, even in comparisons of infinite
numbers, is the sharpest contrast between the Recursive Analysis model, and the
models of Moore and Blum, Smale and Shub. Whereas recursive analysis founds
its formulation on the acceptance of quantities that are incomparable, both the
Moore model and BSS make the drastic and simplifying assumption that infinite
calculations are achievable in finite time."

3.2. Recursive Function(al)s. Recursive analysis developed out of a need for
precision in defining computability on continuous sets, especially within the con-
tinuous scenarios presented by physics and analysis. Many of scenarios are played
out with functions over R™ or C™ (or related subsets) and, with the definition
of computation for real numbers in hand, we may move on to defining a theory
of computability for functions over and into such continuous sets. Grzegorczyk
[Grz55, Grz57] gives the first formulation of the theory that would eventually grow
into recursive analysis. He defines computability for real functions in terms of
functionals, here defined in the most general sense to be functions of functions.
Grzegorczyk conceives of real numbers as functions

ar : N—{0,1,...,9},

where a,(n) codes the nth digit of the real number . Continuous functions are
thus defined to be functionals over the functions describing the real numbers. Let
puS(u) be defined in the usual way to mean the “least u such that the statement
S(u) is true.” Using Grzegorczyk’s notation, let the set 91 be given by

N ={a:N— N}
So I is exactly the set of functions describing the real numbers. Computability for

continuous functions is defined in terms of computability for functionals:

9This is not necessarily a philosophically or mathematically untenable assumption. See
[Bar05].

FINDING THE BEST MODEL FOR CONTINUOUS COMPUTATION 9

Definition 3.5. [Grz55] The class of computable functionals, R, is defined to
be the least class that abides by the following rules (where all a € 1)

(1) R contains the following initial functions:
(a) The identity functional:

(b) The functionals:

<a>(9€,y) ::(x,y) ;:x;y::{ r—yY lf.’I}>y

0 : otherwise.
E(a) (z,y) :== E(z,y) := a¥
S{a) (z,y) == S(z,y) ==z + L.
So we automatically start with a way to find successors and (positive)
differences between numbers and to exponentiate.
(2) R is closed under the following operations:
(a) Substitution, defined in the usual way.
(b) Identification of variables representing numbers with those represent-
ing functions. Specifically, if a € K, where a takes n variables as
arguments, and

Bla)(z1,...,26-1) = ala) (®1,...,Tj,...Tho1,T;),
y(at,. .. an_1) (@1, 28) = alar, ..., a5, ..., an_1,0;) (T1,...,Tk).
Then 3,v € R.

(c¢) Effective minimum: i.e. if o € R, where « takes n functions and k
variables as arguments, and there exist ai,...,a, and x1,..., 251
such that

Za(al,...7ak> (u,21,...,25_1) = 0,10
u€eN

then g defined in the following way:

Blay, ... an) (z1,...,25-1) = (pu)a{a,...,an) (U, 21,...,25-1) = 0]

is also a member of &.

The set of continuous computable functions, K1, is thus defined by the standard
definition for continuity, modified to fit within the bounds of computable functional
theory as follows:

Definition 3.6. [Grz57] A function f : R — R is computable continuous (i.e.
f € R) if and only if there exists a functional & € K such that for all r € R and
all a € 91, we have

Cmf(r>‘<ki1]

10Grzegorczyk describes this condition in a more set theoretic manner as

H H Za(a1,...,ak>(u,a:l,...7;tk_1):0.

at,..., an€Nxy1,...,x_1ENUEN

VkeN[

a(k) 1
—rl<——| = VkeN
k+ 1 T‘<k+1] ke {

10 REBECCA ABIGAIL RESNICK

Grzegorczyk’s definition is robust because, as he proves in [Grz57], his concep-
tion of what constitutes the set of continuous computable functions is equivalent
to several earlier definitions. To simplify future notation, let (gn), cy be a recur-
sive enumeration without repetition of all rational numbers and let (s,), .y be a
computable sequence of all open rational segments. (g,) is clearly classically com-
putable and (s,) is computable in the sense of [PR89]. Then the results of [Grz57]
are summarized as follows:

Theorem 3.7. [Grz57] The following are equivalent:
(1) ﬁ17
(2) Ry given by the following: f € Ko if and only if:*
(a) for any computable sequence (ry), the sequence (f(ry)) is also com-
putable.
(b) There exists a (classically) computable integral function g such that for
all m,n,k € N and a,b € R,

1

) = 5@~ 0] <
In other words, [is computably uniformly continuous within the ra-
tional segments.
(3) R3 given by the following: f € Rs if and only if
(a) f is continuous,
(b) (f(gn)) is continuous,
(¢) (f(gn)) is computably uniformly continuous within the rational seg-
ments.
(4) R4 given by the following: f € R4 if and only if:'?
(a) a€s, = f(a) € sfm),
(b) f(a) € sm = In€N[(a € s,) A(Sfn) C 5m)];
(¢) (s Csp)A(n>k) = Sf(n) S Stk)-

Proof. Grzegorczyk demonstrates the necessary inclusions by introducing three
auxiliary sets, &), 85, and 8 given as follows:
A function f € R} if and only if:

(1) (f(gn)) is computable,

(2) f is computably uniformly continuous.
A function f € & if and only if:

(1) f is continuous,

(2) there exist computable, integer-valued functions, «, such that for all

k,l,m,n,t €N,
a(n, k) 1
rES A
1
(rn < 1) A(re <rm) A <Tl —re| < W) = |a(l, k) — a(t, k)| < 3.

11Grzegorczyk cites the definition of R to an unpublished paper of Mazur entitled Introduction
to the computable analysis. In contemporary parlance, this definition of real computability is
known as Banach/Mazur computability [Wei00]

12This is Lacombe’s definition.

FINDING THE BEST MODEL FOR CONTINUOUS COMPUTATION 11

A function f € &) if and only if there exists a functions computable, integer-valued
function a:

(1) a€s, = fla) € sqm)

(2) b# f(a) = IneN(a€sy)AbESsam)-

The R,’s serve as a bridge between the &;’s and the £;1’s. Grzegorczyk shows
the following sequences of inequalities:
R C Ry C R, C Rz C /) C Ry,
£ C R4 C R C R

This gives the desired result. O

As an addendum to Theorem 3.7, Caldwell and Pour-El [PC75] prove that the
following definition is also equivalent to those aforementioned:

Definition 3.8. [PR89] (Effective Weierstrass) Let I C R™ be a closed, bounded
rectangle. Namely, we have

I" ={(z1,...,2n) 1 a; <x; < b;,1 <i<n},
where a;, b; are computable reals in the sense of definition 3.1. A function
f:I"—=R
is real computable!? if there is a computable sequence of rational polynomials
(gn(x)) and a recursive function g : N — N such that for all x € I"™ and all N € N,

m>g(N) = |f(z) = pm(z)| <27V

This definition is particularly useful because it is analytical rather than set the-
oretic, and thus, makes the task of assessing the computability of specific real func-
tions much more feasible. Indeed, we can show without too much trouble that, in
addition to polynomials, many of the continuous transcendental functions that we
care about are computable in an arbitrary closed, bounded, computable rectangle
[PRA9].

Example 3.9. We show that f(x) = sin(x) is real computable in the sense of
definition 3.8. Let I = [a, b], where a,b € R with |a — b|] < r for some real number
r. Let (pm(x)),,cn be the well-known rational polynomial approximation to sin(z).
In particular, define
CE3 xS (71)mx2m+1

pml®) == or 5 = T
Then (pn,(z)) is clearly recursive, because we have a well-defined procedure for
determining the next polynomial, p,,1(x) from p,,(z). Namely,

(_1)m+1x2m+3
(2m + 3)!

By Lagrange’s remainder theorem [KF75], for all m € N there exists some u € I
such that for all z € 1

Pmt1() = p(x) +

(m+1)
f (U) :Eerl

f(z) =sin(z) = pp(z) + (m+1)!

1sCaldwell, Pour-El and Richards use “computable” rather than “real computable” to denote
this concept. We will use “real computable” to avoid confusion.

12 REBECCA ABIGAIL RESNICK

Since |sin(x)|,|cos(z)| < 1 for all and since ™" is an increasing function, we
have
bm+1
- <.
) =)] < o

Stirling’s approximation [WW96] gives us

o (2) > (3)'

so we have

pm+l pmt+lgm+l 3b m+1
m+ 1! S mynmt (erl)
Setting g(n) = 6bn, we have, for all N € N and all m > g(N):
pm+1 3b 6bN 1 6N
- < < - -,
(@) =pml@)l < Gy < <6bN—|—1> < (2) <2

So sin(z) is indeed a real computable function. O

The next obvious question from the analytical perspective is, what happens to
computability when we differentiate? Or, as Pour-El and Richards phrase it, “if a
computable function possesses a continuous derivative, is the derivative necessarily
computable?” [PR89]. Pour-El and Richards demonstrate that the solution to this
question depends on whether the second derivative of f, f”, is itself continuous:

Theorem 3.10. [PR89]. Given a real computable function f : I — R, where I is
as in definition 3.8, if f" is continuous, then [’ is real computable.

If f” is not continuous then, as Myhill [Myh71] shows, using an example of a
function which Pour-El and Richards [PR89] call a “superposition of countably
many pulses” of the form:

2 2
o(z) = e” /=27) <1
0 : otherwise,

f' is not necessarily real computable.

3.3. Results. Contemporary research in and using recursive analysis has demon-
strated its applications to physics, analysis and, to a somewhat lesser degree, com-
putational complexity. See [Wei00] for an in-depth discussion of the recent results
of recursive analysis and [BC06] for further contemporary results. Research in re-
cursive analysis has not focused solely on its applications to other fields, however.
Bournez and Hainry [BHO06] give a description of the techniques of recursive anal-
ysis in terms of a class of functions obeying certain criteria. Specifically, Bournez
and Hainry demonstrate that real computable functions defined in the sense of
Grzegorcyzk and Pour-el and Richards [Grz57, PR89] are precisely those functions
contained in the the “smallest class of functions that is...closed by composition,
linear integration, minimalization and limit schema” [BH06]. When compared with
Grzegorczyk’s definition of the class, &, of real computable functionals (definition
3.5), Bournez and Hainry’s conclusion makes intuitive sense. The innovative part
of their argument lies in their relation of the technique of linear integration to the
definition of what it means to be real computable. The fact that the class of real
computable functions is closed under linear integration is particularly interesting in

FINDING THE BEST MODEL FOR CONTINUOUS COMPUTATION 13

light of the previously cited result of Pour-El, Richards and Myhill (theorem 3.10)
that closure does not hold, in general, for the operation of differentiation.

Moore [Mo0095] takes the notion of characterizing real computability via integra-
tion one step (or perhaps one giant leap) further by defining real computability in
terms of integrability. Whereas Bournez and Hainry’s result, while appealing to
the idea of linear integrability, hews to the recursive analysis-supported notion of
real computable functions as those which are approximated, in an effective manner,
by classically computable functions, Moore’s model dispenses altogether with the
notion of the necessity of approximabililty. Moore’s model defines integration to
be a primitive operation of the set of real computable'* functions. While Bournez
and Hainry’s result implies that this definition in itself does not separate Moore’s
model from Recursive Analysis, Moore also introduces an operator, 7, which com-
presses the process of searching over all of R into a finite-time operation [Mo095].
Moore’s model thus creates an interesting link between the approximation focus of
Recursive Analysis and the Blum-Smale-Shub model, in which infinite calculations
are, by assumption, achievable in finite time.

4. THE BLUM-SMALE-SHUB MODEL

4.1. Background. The Blum-Smale-Shub (BSS) model begins from the perspec-
tive that, in order to model computation over the real numbers, we need to make
the drastic simplifying assumption that computations over infinite-length inputs
can be performed in finite time. BSS is not the first model to suggest the introduc-
tion of such an axiomatic assumption (BSS does, however, predate the previously
mentioned Moore model). In the original description of the BSS model [BSS89],
the authors also give a long laundry list of related models of computation, both dis-
crete and continuous. According to them, the models of computation most closely
related to the spirit of BSS are [SS63, HI70]. We choose to elaborate on the BSS
model in particular because it is both recent (having been described initially in
1989) and influential (having generated a large body of research in the theories of
computational complexity and analytical method). We also choose the BSS model
because it is described entirely algebraically, and thus serves as an elucidating foil
for the analytical, approximation-based description of recursive analysis.

Blum, Smale and Shub see their model as a necessary heir to the “fundamentally”
flawed model of classical computation. They (and a fourth author, Cucker) write:
The point of view of this book is that the [classical] model with its
dependence on 0Os and 1s is fundamentally inadequate for giving...a
foundation to the theory of modern scientific computation, where
most of the algorithms—with origins in Newton, Euler, Gauss, et

al.—are real number algorithms [BCSS97].

Whereas recursive analysis seeks to work within the framework of classical com-
putability to create an analogous notion of computability for real numbers and
functions, the BSS model denies the notion that a discrete model should be the
foundation of computation in a non-discrete, real-valued world.

4.2. The model. We describe the model in the finite dimensional case. That is, we
describe a way of computing continuous processes where the inputs and outputs are
of the form R™, R, respectively, for some n,l € N. It should be noted that, both

M\oore uses the alternative terminology of “R-recursive.”

14

REBECCA ABIGAIL RESNICK

in their original exposition of the BSS model and in their subsequent reference,
Blum, Smale, Shub and Cucker first define their machines in the more general
scenario of computation over an arbitrary ring, R. We restrict our definition to
the real numbers (which is the ultimate stated goal of the BSS model anyway) for
simplicity.

Definition 4.1. A finite-dimensional BSS machine M over R is a 10-tuple,
M = (Ipr, 801, Onr, Nasy ty Sstart, i, G, H, O), which abides by the following criteria:

(1)

(2)

Inr, S8, and Oy are the input space, output space and state space
respectively. For our purposes we restrict Jps, Sys, and Op; to be equal to
R"™, R™ and R’ respectively.

Ny is the finite set of nodes through which an input can pass during a
M’s calculation. Each node in Ny, falls into one of the following four cat-
egories, and is associated with a map between or within Iy, 857, Opr, Ny,
as described below:

(a) The input node, Sgqrt- Sstart 1S the first node through which all
inputs pass. Ssiqrt 1S associated with a linear map, 7 : Jpy — Sps.

(b) Computation nodes. Each computation node, s,, is associated with
a rational function g, € G, where g5, : Sy — 8+ M. g5, is called the
computation map for s,,. Each computation node s, has a unique
outgoing edge, as specified by the transition function, ¢, below.

(¢) Branching nodes. Each branching node, s, is associated with a
polynomial function hy, € H, where hy_ : 8y — R. hg is called the
branching map for s,. Branching nodes are effectively a method of
making comparisons among elements of the state space 8, as specified
by the transition function, ¢, below.

(d) Output nodes. Each output node, s, is associated with a linear map
0s, € O, where o5, : 8§ = 0. 05 is, unsurprisingly, called the output
map for s,. Output nodes have no outgoing edges to other nodes
within the graph.

The transition function for M, ¢ : Np; x 83y — Ny, gives the next node
through which a given input will pass. For a node s,, that is either the start
node or a calculation node, t(s,,z) = s, for all z € 83y = R™. So s, has
a single, determined next node, s,/. For s, a branch node, we have:

f spu+ ths,(x)>0
t(sn,7) = { Sp— hs, (x) <0,

Where s,,+ and s,,- are possibly (and, in practice, always) non-equivalent
nodes, and h,, is the branching function associated to hs, . If s, is an out-
put node, then s,, has no outgoing edges to other nodes. For completeness
of terminology, we thus define ¢(s,,x) = s, in this case.

We observe several features of this definition. Firstly, note that, without loss of
generality, we may assume that M has a unique output node n,,; (we could just
add an extra node at the end of the computation into with all the output nodes
mapped that does nothing but output whatever it is given). Also note that a BSS
machine is, like a Turing machine, effectively a finite graph, where the directed

151BSS89] and [BCSS97] refer only to finite dimensional machines over R. We insert “BSS”
for clarity.

FINDING THE BEST MODEL FOR CONTINUOUS COMPUTATION 15

edges between the nodes are given by a transition function. However, the criteria
for an allowed edge within a BSS machine is considerably more restrictive than in
the Turing machine case. Whereas a given node in a Turing machine may have
outgoing edges to at most |T'| nodes, where T' is the tape alphabet (see definition
2.2), a node within a BSS machine has at most 2 outgoing edges. Except for in the
case of branching nodes, the present node uniquely determines the next position of
the machine.

Relatedly, whereas in the definition of the Turing machine (definition 2.2), the
state space, S, defined the set of nodes for the graph of T, BSS machines have
both states and nodes. For the BBS machine, while there are only a finite number
of nodes, there are an uncountable number (all x € R™) of states in which a
calculation could reside at any given step. Herein lies the fundamental difference
between Turing machines and BSS devices. Whereas in a Turing machine, the
calculation takes place in the transitions between edges, in a BSS machine, the
calculations take place within the nodes. The edges between the nodes of a BSS
machine are essentially a way to separate different, but inevitably sequential, steps
of calculation.

Also note that, while M essentially recreates the action of a function or process
from R™ — R!, the transition functions describing the interim steps must be of
degree m, where m may or may not be equal to either n or . By assuring that the
input map ¢ and the output maps O are linear, we assure that all of the (meaningful)
calculations and comparisons for M occur among ration functions on R™.

Example 4.2. We present an example of the types of questions that can be an-
swered with the BSS model. We describe (and depict, in figure 2) a BSS machine
that simulates Steffensen’s method,'® an algorithm that approximates roots of poly-
nomial functions over R. Steffenson’s method works by making successively better
guesses for the value of the root based on linear approximations. Suppose f : R -+ R
is a polynomial with a has a root that we wish to approximate. Choose an arbitrary
o € R to be our first guess. Then x,,1 is defined as follows:

et =) e S)~ Fn) T Fa +) — Fe)

Instead of using f’, as in Newton’s method, to find the linear approximation, we
approximate f’ via the formula,

f(@n + f(zn)) — f(mn),

If, as we hope, f(x,) — 0 as n — oo, this formula gives an increasingly accurate
approximation of the derivative f’(x,). The sequence (x,) described by Steffensen’s
method converges to the root under the mildly restrictive conditions'” that f has
a continuous second derivative f” in a closed interval of length 2a centered around
the root, and that f’(«) # 0.

We chose to describe the BSS machine for Steffensen’s method because it em-
phasizes the discount that the BSS applies to classically time-intensive calculations.

16Blurn, Smale, Shub and Cucker [BCSS97] present a similar example of a BSS machine which
simulates Newton’s method.

175ee [DB03, BF04] for a more in-depth description of Steffensen’s method and its criteria for
convergence.

16 REBECCA ABIGAIL RESNICK

Namely, in order to calculate x,4; from z,, we must perform at least two calcu-
lations on f: first, we must calculate f(z,), and then, using this result, we must
calculate f(x, + f(z,)). For a high-degree polynomial f and an irrational number
Ty, this is a complicated task; however, this potential snare is not of concern within
the BSS model. Such polynomial computations are, by assumption, accomplished
in constant time. Instead of bothering with questions about how long it takes to
do a given calculation, the BSS model is more concerned with the speed of a given
algorithm’s convergence in a global sense. That is, how many steps of calculation
do we have to do to get an output? We know from [DB03] that Steffensen’s method
(like Newton’s method [BCSS97]) converges quadratically.

The approximation of a root to an arbitrary precision for f via Steffensens’s
method is easily represented with the following BSS Machine, N. In this case,
J=8=0=R. Let ¢ >0 and let N be give by figure 2'8,

Sstart Input: x

L

X Set: x = x —)?
& St fx) - fix)
)l —e=0
A 4
sz | Caleulate: |f{x)|

ftw—e<0
4

S3 Output: x

FIGURE 2. A Steffensen’s method machine to approximate a root
of f to within e.

The transition function is clearly specified by the edges between the nodes given
above. Note that the “=” in node s; above is an assignment rather than an
equivalence. s; is a computation node which effectively resets the value of the the
current input x based on the next value of the sequence (x,) given above. This

gives
2
T
o) U@
fl@+ f(z)) = f(z)
The calculation branches in sy based on the real-valued branching function hs,
given by

hsy(x) = | f(z)| —e.
If hs, < 0, meaning f(z) is less than € away from being a root, then we output the x
that we have found. Otherwise, we do another round of Steffensen’s algorithm and
try again. It is worth noting that, just as when we perform Steffensen’s method by
hand, the recursive nature of the N lends itself to the possibility that, on a given
input x, we will never output anything, and will instead be stuck in an infinite loop
of calculation. Blum, Smale, Shub and Cucker define Q7 (T € N), which they call

181 drew figure 2 myself, based on a similar figure for the Newton machine in [BCSS97].

FINDING THE BEST MODEL FOR CONTINUOUS COMPUTATION 17

the time-T halting set of N, to be the set of all x which have output a result
after at most T trips through the branching node s,. More generally, they define
the halting set of NV, 2 by

Q=[] or

TeN
Q is the set of all inputs « on which NV eventually reaches an output.
The notion of the halting set for N leads to the BSS conception of computabil-
ity'%, which, unsurprisingly, is exactly analogous to the classical definition:

Definition 4.3. [BCSS97] A set?® S is BSS computable if there exists a BSS
machine, Mg that describes it, such that the halting set for M is equal to the
output space. That is,

QS = OMS~

A set is semicomputable if there exists a BSS machine Mg such that:

1 tx e S
0 or undefined : otherwise.

Mg (z) = {

It is a simple fact that, if a set .S and its complement S¢ are both semicomputable,
then S is BSS computable. The proof is analogous to the classical case (see [Sip05]
for a proof in the classical case).

As previously noted, Steffensen’s approximation is clearly not BSS computable
for all possible polynomial functions f. Take f(x) = 1—x2. Then, f has roots at x =
+1, Letting Ny be defined as above, N¢(0) never produces an output since it is stuck
in an infinite loop of z = 0. Hence 0 & €). Since nothing precludes our choosing 0 as
an input, Ny cannot be BSS computable. Nonetheless, there are other interesting
questions that we can ask about Steffensen’s approximation with respect to BSS
computability. Specifically, we know that Steffensen’s approximation converges
for some inputs, but not for others, so we might wonder, as [BCSS97] notes for
Newton’s method, whether the set of input for which Steffensen’s approximation
converges for a given function f is itself computable. The answer to this question
is analogous to the case for Newton’s method, which is discussed in [BCSS97]. In
the case of Newton’s method, the answer depends on the computability of the Julia
set, which is beyond the scope of this exposition.

4.3. Results. Blum, Smale, Shub and Cucker give a comprehensive review of the
research on and using BSS models through 1997 in [BCSS97]. One example that
they cite in which techniques of BSS model have been useful, that is, the discussion
of the computability and complexity of the Mandelbrodt set. For each ¢ € C?!, we
define the function f.: C — C by

fo(2) =22 +c

191BCSS97] uses the analogous word, “decidability.”

2O[BCSSQ?] uses the word “problem” to describe more general scenarios like Steffensen’s method
of approximating roots. When asking questions about BSS computability for such an object, we
are referring to the computability of the sets that the object defines. The BSS model does not
have a notion of computability for functions that is analogous to real computability for functions
as described in section 3.2

2176 this point, we have spoken about computability within both the recursive analysis and
BSS framework only for R”. Considering C as R?, the definition of computability over C is clear.

18 REBECCA ABIGAIL RESNICK

and define the sequence (c,),,cy to be the sequence given by co = ¢, cpy1 = fe(cn).
Then the Mandelbrodt set [BCSS97, BCO06] is the set of points:

M={ceC: {ec,) converges.}

Blum, Smale and Shub [BSS89] seek to answer the question of whether the
Mandelbrodt set is computable within their framework. That is, can we find a
BSS machine M such that M(z) = 1 for all x € M and M(z) = 0 otherwise.
They point out that the BSS model is particularly suited to this question because
of its infinite precision. In contrast to the recursive analysis model, where, as we
demonstrated in fact 3.3, it is sometimes impossible to make definitive, effective
comparisons between quantities, within the BSS model, we do not have such a
problem [BCSS97]. See section 5 for more on this particular difference between the
BSS model and recursive analysis.

Blum, Smale and Shub demonstrate that the Mandelbrodt set is not computable
by showing that its complement,

Me={ceC:¢, — 0c0asn— oo}

is not computable (if either M or M¢ were computable by a machine M, then the
other set would automatically be computable by M’ defined to be M with the
output states flipped).

The proof of the uncomputability of M€ relies on a class of objects fundamental
to the BSS model: semi-algebraic sets.

Definition 4.4. Let {R;, Ry,..., R,} be a finite system of polynomial equations
and/or inequalities over R (so R;(x) = 1 if z satisfies R; and 0 otherwise). A set
S € R" is basic semi-algebraic over R if

S ={z e R": Vi <n[R;(x) =1]}.
A set S is semi-algebraic if S is the finite union of basic semi-algebraic sets.

The proof, as given by [BCSS97] that the M is not computable is then sketched
as follows:

Lemma 4.5. [Shi98] M is not the countable union of semi-algebraic sets over R

Blum, Smale, Shub and Cucker cite this lemma without proof, claiming that it
lies within the purview of complex dynamics and is outside of the scope of real
computation. They pause to note that the proof is a consequence of M having
Hausdorff dimension 2. Informally, this means that we can cover M with a collection
of balls (B;(r;));c; for some I such that the sum of all the r; is less than 2, but
that we cannot find such a covering for any number less than 2. The proof that M
is not computable is then completed by the following theorem:

Theorem 4.6. [BCSS97] If M is a BSS machine over R, then
(1) For any T >0, Qr is a finite disjoint union of basic semi-algebraic sets,
(2) The halting set Qpr is a countable disjoint union of basic semi-algebraic
sets.

The proof of this theorem depends on defining 27 in a new way. Let M be a BSS
machine, and v be a logical path through the machine of possibly infinite length.
Define v(k) to be the first k steps of v, and let v, (;) be the set of points in Jps that
have computations paths that share the first k steps with . Symbolically,

Voy(k) = {iﬂ €Ju: ’Yz(k) = ’Y(k)}

FINDING THE BEST MODEL FOR CONTINUOUS COMPUTATION 19

Relatedly, define I'r to be the set of all paths through M that halt in time T, and
let T'ps be the union of all such I'r. Define the slightly smaller set, I}, by to be the
set of paths through that reach the output node, n,,; exactly once. Then Blum,
Smale, Shub, and Cucker observe that

Qr = U vy, and Qp = U Vs .
yelr YETYy,

The desired result follows by observing the “natural correspondence” between semi-
algebraic sets and semi-algebraic formulas [BCSS97]. Hence, M is not described by
any BSS machine, and is thus not computable. Aside from addressing questions
of set computability, the BSS model has also been influential in complexity theory
because of it’s relation to algebraic circuits (see [BCSS97, AB09]) for a description
of the BSS model’s uses in computational complexity theory.

5. COMPARISONS

So, which model is the best? Before addressing this question directly, we observe
several important distinctions that have emerged during the past 18 pages. The
first relates to the question of what is “easy” to compute with respect to each
model. Recall example 3.9, in which we demonstrated that the function

f() = sin(x)

is real computable. Similar proofs can be given for a variety of transcendental
functions, including all the trigonometric functions, e®, and I'(x) [PR89]. These
proofs all rely on the fact that recursive analysis is fundamentally a model of real
computation based on approximation by rations, and the functions in question are
all approximated by well-known sequences of polynomials. Try proving the same
result for BSS computability and you run into a snag. While the BSS model has,
in some sense, greater computational power because it assumes the compression
of infinite computations into finite space, it only defines such power with respect
to polynomial functions. The BSS model’s great strength, that it algebratizes
the theory of computation to the greatest degree possible and, in the process,
dovetails with contemporary research directions in computational complexity, is
also its weakness when it comes to describing computations on other classes of
functions.?? Moore [Mo095] points out this flaw in the BSS model, and uses it as
evidence for the validity of his own model of analog computability, which is based
on the operation of function integration, and thus includes the aforementioned
transcendental functions as primitives.

Before getting too down on the BSS model for its apparent inability to model
some of the functions we care about most, we note an important realm in which
the BSS model easily surpasses recursive analysis: precision in comparison. Recall
fact 3.3, which states that, within the framework of recursive analysis, it is possible
to define a number z = 0 and have no effective procedure for demonstrating that
x = 0. This implies the existence of scenarios in recursive analysis in which we
would be unable to effectively compare two quantities. Using the BSS model, we
have no such problem. See figure 3%3.

22[BC06], also points out this distinction between the BSS and the recursive analysis model
(which he calls the “bit-model”).
23] drew this figure myself based on a similar figure in [BCSS97].

20 REBECCA ABIGAIL RESNICK

FiGURE 3. A BSS subroutine for determining whether the quantity
x is equal to 0. Because the BSS model works under the assumption
of infinite precision, it is able to determine, definitively and in finite
time, whether two quantities are equal. This is a feat which the
approximation-based recursive analysis model could never hope to
achieve.

6. CONCLUSION

The BSS model and recursive analysis are designed for different, albeit over-
lapping purposes. The BSS model, with its foundation in algebraic equations and
assumption of infinite precision, is invaluable for giving evidence on questions of
set computability and computational complexity. In contrast, recursive analysis
is better at dealing with questions about functional computability. Additionally,
because it focuses on rational approximation, recursive analysis is perhaps a more
realistic model of the way that we think about, or at least program our computers
to think about, computing on irrational numbers.

This dichotomy, and the volume of research generated for each model indepen-
dently speaks to the lack of consensus over exactly what is meant by the phrase
“continuous computation.” Do we believe that this means infinite precision or dec-
imal approximation? The answer depends on what you are trying to prove.

7. ACKNOWLEDGMENTS

I would like to express my profound gratitude to my advisor, Dr. Gerald Sacks,
for his mentorship, both in learning mathematical logic and in finding the best
path from Minsk to Pinsk. I would also like to thank Hannah Resnick and David
Kosslyn for their critique and proofreading of earlier drafts. Finally, I would like to
thank my parents, Raiselle and Kenneth Resnick, for twenty-two years of support
and guidance and for believing that I could do hard math. ©

REFERENCES

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 1 edition, April 2009.

[Bar05] John D. Barrow. How to do an infinite number of things before breakfast.
New Scientist, (2484):28-32, January 2005.

[BC06] Mark Braverman and Stephen Cook. Computing over the reals: Foun-
dations for scientific computing. Notices of the AMS, 53, 2006.

[BCSS97]
[BF04]

[BHOG]

[Bra97]

[BSS89)

[Dav65]

[DB03]
[Grz55]
[Grz57]

[HI70]
[KF75]
[Kle52]

[Koi97]

[LS01]
[Mo095]

[Mo0096]

[Mos09]

[MyhT71]

[PC75]

[PRSY]

FINDING THE BEST MODEL FOR CONTINUOUS COMPUTATION 21

Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity
and Real Computation. Springer, 1 edition, October 1997.

Richard L.(Richard L. Burden) Burden and J. Douglas Faires. Numerical
Analysis. Brooks Cole, 008 edition, December 2004.

Olivier Bournez and Emmanuel Hainry. Recursive analysis character-
ized as a class of real recursive functions. Fundamenta Informaticae,
74(4):409-433, January 2006.

Vasco Brattka. Order-free recursion on the real numbers. Mathematical
Logic Quarterly, 43(2):216-234, 1997.

Lenore Blum, Mike Shub, and Steve Smale. On a theory of computa-
tion and complexity over the real numbers: NP- completeness, recursive
functions and universal machines. Bulletin of the American Mathemati-
cal Society, 21(1):1-46, 1989.

Martin Davis. The undecidable; basic papers on undecidable propositions,
unsolvable problems and computable functions. Raven Press, Hewlett,
N.Y.,, 1965.

Germund Dahlquist and Ake Bjorck. Numerical Methods. Dover Publi-
cations, April 2003.

Andrzej Grzegorczyk. Computable functionals. Fundamenta Mathemat-
icae, 42:168-202, 1955.

Andrzej Grzegorczyk. On the definition of computable real continuous
functions. Fundamenta Mathematicae, 44:61-71, 1957.

Gabor T. Herman and Stephen D. Isard. Computability over arbitrary
fields. J. London Math. Soc., 2(2):71-79, 1970.

A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Dover
Publications, 1st edition, June 1975.

Stephen Cole Kleene. Introduction to metamathematics. University series
in higher mathematics. Van Nostrand, New York,, 1952.

Pascal Koiran. A weak version of the blum, shub, and smale model.
Journal of Computer and System Sciences, 54:177189, February 1997.
ACM ID: 255841.

Roger C. Lyndon and Paul E. Schupp. Combinatorial Group Theory.
Springer, March 2001.

Cristopher Moore. Recursion theory on the reals and continuous-time
computation. Theoretical Computer Science, 162:23—44, 1995.
Cristopher Moore. Dynamical recognizers: Real-time language recogni-
tion by analog computers. Theoretical Computer Science, 201:99—136,
1996.

Yiannis N. Moschovakis. Descriptive Set Theory. American Mathemati-
cal Society, 2 edition, June 2009.

J Myhill. A recursive function, defined on a compact interval and having
a continuous derivative that is not recursive. Michigan Math. J, 18(2):97—
98, 1971.

Marian Boykan Pour-El and Jerome Caldwell. On a simple definition of
computable function of a real variable-with applications to functions of
a complex variable. Mathematical Logic Quarterly, 21(1):1-19, 1975.
Marian Boykan Pour-El and J. Ian Richards. Computability in Analysis
and Physics. Springer-Verlag, 1989.

22

[Shis]

[SipO5]
[SS63]

[Tur36]

[Wei95]

[Wei97]

[Wei00]
[WWO6]

[Zho98)

REBECCA ABIGAIL RESNICK

Mitsuhiro Shishikura. The hausdorff dimension of the boundary of the
mandelbrot set and julia sets. The Annals of Mathematics, 147(2):225—
267, March 1998. ArticleType: research-article / Full publication date:
Mar., 1998 / Copyright 1998 Annals of Mathematics.

Michael Sipser. Introduction to the Theory of Computation. Course
Technology, 2 edition, February 2005.

J. C Shepherdson and H. E Sturgis. Computability of recursive functions.
Journal of the ACM (JACM), 10:217255, April 1963. ACM ID: 321170.
Alan Mathison Turing. On computable numbers, with an application
to the entscheidungsproblem. Proceedings of the London Mathematical
Society, 42(2):230-65, July 1936.

Klaus Weihrauch. A simple introduction to computable analysis. Infor-
matik Berichte Nr., 171:1-80, 1995.

Klaus Weihrauch. A foundation for computable analysis. In Proceed-
ings of the 24th Seminar on Current Trends in Theory and Practice of
Informatics: Theory and Practice of Informatics, SOFSEM ’97, pages
104-121. Springer-Verlag, 1997.

Klaus Weihrauch. Computable analysis: an introduction. Springer, No-
vember 2000.

E. T. Whittaker and G. N. Watson. A Course of Modern Analysis.
Cambridge University Press, 4 edition, September 1996.

Ning Zhong. Recursively enumerable subsets of rq in two comput-
ing models Blum-Shub-Smale machine and turing machine. Theoretical
Computer Science, 197(1-2):79-94, May 1998.

